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Summary: We examine the impact of genetic ancestry on gene expression and DNA methylation of 

admixed African/Black Americans, highlighting how genetic and environmental background affect 

risk for brain illness. 

Abstract:  

Ancestral differences in genomic variation are determining factors in gene regulation; however, most 

gene expression studies have been limited to European ancestry samples or adjusted for ancestry to 

identify ancestry-independent associations. We instead examined the impact of genetic ancestry on 

gene expression and DNA methylation (DNAm) in admixed African/Black American neurotypical 

individuals to untangle effects of genetic and environmental factors. Ancestry-associated differentially 

expressed genes (DEGs), transcripts, and gene networks, while notably not implicating neurons, are 

enriched for genes related to immune response and vascular tissue and explain up to 26% of 

heritability for ischemic stroke, 27% of heritability for Parkinson’s disease, and 30% of heritability 

for Alzhemier’s disease. Ancestry-associated DEGs also show general enrichment for heritability of 

diverse immune-related traits but depletion for psychiatric-related traits. The cell-type enrichments 



and direction of effects vary by brain region. These DEGs are less evolutionarily constrained and are 

largely explained by genetic variations; roughly 15% are predicted by DNAm variation implicating 

environmental exposures. We also compared Black and White Americans, confirming most of these 

ancestry-associated DEGs. Our results highlight how environment and genetic background affect 

genetic ancestry differences in gene expression in the human brain and affect risk for brain illness. 

  



Introduction 

Health disparities have endured for centuries (1). In neuroscience and genomics, individuals with 

recent African genetic ancestry (AA) account for less than 5% of large-scale research cohorts for 

brain disorders but are 20% more likely to experience a major mental health crisis (2, 3). Insights 

gained from genome-wide association studies (GWAS) about disease risk are promising for clinical 

applications (e.g., drug targets for novel therapeutics and polygenic risk prediction). However, the 

majority of GWAS of brain-related illness lack diversity with regards to inclusion of AA individuals, 

who account for less than 5% of GWAS participants (4), despite AA individuals having more 

extensive genetic variation than any other population. This lack of diversity limits the accuracy of 

genetic risk prediction, hinders the development of effective personalized neurotherapeutics for non-

European genetic ancestry (EA) individuals (5), and limits our potential for novel discovery. While 

diversity in large-scale GWAS has increased in recent years (e.g., 1000 Genomes Project (6), All of 

Us research program, Trans-Omics for Precision Medicine [TOPMed] (7), and Human Heredity and 

Health in Africa [H3Africa] Consortium (8)), population-based genetic association studies do not 

directly elucidate potential biological mechanisms of risk variants.  

To bridge this gap, we need studies of the biological impact of genetic variation on molecular traits 

(e.g., mRNA and DNA methylation [DNAm]) in disease-relevant tissues of diverse populations. 

Recent efforts to bridge this gap with cross-ancestry expression quantitative trait loci (eQTL) have 

focused on improved fine mapping while leaving unanswered the question of how gene expression 

and epigenetic regulation are parsed specifically by ancestry (9). Despite a clear urgent need, no large-

scale studies examine the biological impact of genetic ancestry on gene expression in the human brain 

focused on the differences between AA and EA.  

An obvious impediment to undertaking this task is the limited availability of brain tissue from AA 

individuals. Currently, the most widely used resource for human postmortem tissue is the Gene-Tissue 

Expression Project (GTEx), which has publicly available RNA-sequencing and single nucleotide 

polymorphisms (SNP) genotyping for nearly 1,000 mostly elderly individuals, including data from 13 

brain regions (114 to 209 individuals per region). However, the majority of GTEx brain samples are 

of EA, and for some brain regions, GTEx has no non-EA individuals. In comparison, the BrainSeq 

Consortium, a collaboration between seven pharmaceutical companies and the Lieber Institute for 

Brain Development (LIBD), has one of the largest postmortem brain collections of psychiatric 

disorders, including 784 Black American samples across 587 unique individuals, with a mean age of 

44. While reports from this consortium and other large-scale analyses in the brain – including from 

the hippocampus, caudate nucleus (“caudate”), dorsolateral prefrontal cortex (DLPFC), and granule 

cells of the dentate gyrus (“dentate gyrus”) – have samples of diverse genetic ancestry (10–16), they 

have typically been “adjusted” for ancestry status, which limits our understanding of ancestry-specific 

effects in the brain.  

To address these gaps, here we use the LIBD RNA-sequencing, SNP genotype, and whole genome 

bisulfite sequencing (WGBS) datasets to evaluate genetic and environmental contributions to genetic 

ancestry differences in gene expression in the human brain (Fig. 1). We identify transcriptional 

features associated with genetic ancestry (African or European) in admixed neurotypical Black 

American donors (n=151). We quantify the contributions of common genetic variations to genetic 

ancestry differences using a total of 425 samples, including the caudate (n=122), dentate gyrus 

(n=47), DLPFC (n=123), and hippocampus (n=133). Additionally, we examine the influence of 

genetic ancestry on DNAm using WGBS data of the admixed Black American donors from the 
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caudate (n=89), DLPFC (n=69), and hippocampus (n=69). To confirm the genetic ancestry-associated 

differences in gene expression and to highlight the effect of environment by genetic ancestry 

differences, we further examine transcriptional and DNAm differences in individuals of limited 

admixture (Black Americans ≥ 0.8 AA and White Americans > 0.99 EA).  

 

Fig. 1: Study design for the examination of the genetic and environmental contributions to 

genetic ancestry-associated expression differences. BA stands for Black Americans and WA for 

White Americans. 

Results 

Significant enrichment of immune response for differential expression associated 

with genetic ancestry across the brain 

We selectively examined our admixed Black American population (151 unique individuals; Table S1) 

to 1) characterize transcriptional changes associated with African or European genetic ancestry in 

neurotypical adults (age > 17) and 2) limit potential confounding effects of systematic environmental 

factors that may differ between Black and White American samples. These analyses included RNA 

sequencing data from caudate (n=122), dentate gyrus (n=47), DLPFC (n=123), and hippocampus 

(n=133). Our admixed Black American population showed a varied proportion of EA (STRUCTURE 

(17); EA mean = 0.21, range = 0-0.62; Fig. S1) consistent with previous reports (18, 19). As such, we 

used these continuous genetic ancestry estimates to identify differentially expressed features (genes, 

transcripts, exons, and junctions) that were linearly correlated with ancestry levels and adjusted for 

sex, age, and RNA quality. This RNA quality adjustment includes experiment-based RNA 

degradation metrics (obtained with the qSVA methodology) that account for batch effect and cell 

composition (12, 20). To increase our power of detection and improve effect size estimates, we 

applied the multivariate adaptive shrinkage (“mash” (21)) method, which leverages the correlation 

structure of genetic ancestry effects across brain regions (see Methods for details). 
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Of the 16,820 genes tested, we identified 2,570 (15%; 1,437 of which are protein coding) unique 

differentially expressed genes (DEGs) based on ancestry variation (local false sign rate [lfsr] < 0.05; 

Fig. 2A, Table S2, and Data S1) across the caudate (n=1,273 DEGs), dentate gyrus (n=997), DLPFC 

(n=1,075), and hippocampus (n=1,025). While this number increased when we examined differential 

expression based on local ancestry (9,906 [62% of genes tested]; 6,982 protein coding; Table S3) 

across the caudate (n=6,657 DEGs), dentate gyrus (n=4,154), DLPFC (n=6,148), and hippocampus 

(n=7,006), effect sizes between global- and local-ancestry DEGs showed significant positive 

correlations (all Spearman; rho > 0.57, p-value < 0.01; Fig. S3) across all brain regions. When 

examining isoform-level associations (transcripts, exons, and junctions), we found an additional 8,012 

unique global ancestry-associated DEGs (lfsr < 0.05; Fig. S2, Table S2, and Data S1) and 6,629 

unique local ancestry-associated DEGs (lfsr < 0.05; Table S3 and Data S2) in these Black Americans. 

Similarly, we found that isoform-level local ancestry DE features showed significant positive 

correlation in effect sizes compared with global ancestry DE features (Fig. S3). 

To evaluate the functional aspects of these genetic ancestry-associated DEGs (global and local 

ancestry), we performed gene set enrichment analysis with the Gene Ontology (GO) and Disease 

Gene Network (DisGeNET (22)) databases for each brain region. It is noteworthy that while there was 

no enrichment of neuronal gene sets, we observed significant enrichment (GSEA and hypergeometric, 

q-value < 0.05) for GO and DisGeNET terms primarily related to immune response, including innate, 

adaptive, and virus responses (Data S3, Fig. 2B, and Fig. S4). Interestingly, the caudate showed an 

opposite direction of effect compared with the DLPFC and hippocampus. Specifically, the caudate 

showed enrichment of immune response associated with DEGs upregulated in relation to AA 

proportion, while dentate gyrus, DLPFC, and hippocampus showed enrichment for immune-related 

pathways associated with DEGs upregulated in EA proportion (Fig. 2B and Fig. S5). While not 

significant, we observed the same pattern of opposite directionality of effect for immune-related 

pathways with local ancestry-associated DEGs (Fig. S6). 

When we expanded this analysis to the isoform level (transcripts, exons, and junctions), we also found 

significant association with immune-related pathways and similar directions of effect (upregulated for 

AA proportion in the caudate and upregulated for EA proportion in dentate gyrus, DLPFC, and 

hippocampus). Furthermore, we also found significant analogous enrichment of these DEGs for genes 

with population differences in macrophages (18) associated with innate immune response to infection 

(Fisher’s exact test, false discovery rate [FDR] < 0.05; Fig. S7). Additionally, we found significant 

enrichment (Fisher’s exact test, FDR < 0.01) for ancestry-associated DEGs (global ancestry) in gene 

coexpression network modules generated using WGCNA (Weighted Gene Co-expression Network 

Analysis (23); Fig. S8). Consistent with our DEG analysis, the immune response pathway enrichment 

in these modules showed analogous opposite direction of effects based on region (Fig. S9). 

Observing an enrichment of the immune response pathway in bulk tissue, we performed cell-type (24, 

25) enrichment analysis to evaluate the cellular context of these ancestry-associated DEGs (global 

ancestry). We found significant enrichment (Fisher’s exact test, FDR < 0.05; Fig. S10 and Fig. S11A) 

for genes specifically expressed in brain immune cells (i.e., glia and microglia cell types) and 

neurovasculature (i.e., pericyte, endothelial, and vascular tissue cells), but not peripheral immune 

cells. Additionally, we observed enrichment for distinct subtypes of glial cells (26) (Fig. S12). 

Interestingly, local ancestry-associated DEGs showed significant enrichment for brain and non-brain 

immune cells (Fisher’s exact test, FDR < 0.05; Fig. S13 and Fig. S11B) potentially due to the larger 

number of detected DEGs. Even so, we found the level of enrichment of non-brain immune cells 

(global and local) on average smaller than brain immune cells. Remarkably, we again found primarily 

significant depletion of DEGs (global and local) for any genes specific to neuronal cell types. 
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Consistently, we observed those immune-related pathways and associated cell types (i.e., microglia 

and perivascular macrophage) for DEGs upregulated with increasing AA proportion in the caudate 

and upregulated with increasing EA proportion in the dentate gyrus, DLPFC, and hippocampus. 

Although we found some glial cell subtype (26) composition differences (ANOVA, FDR < 0.05; 

Fig. S14) using publically available single cell data from brain regions with similar composition (27), 

no glial subtype (26) showed specificity for a specific direction of ancestry effect (Fig. S12). 

Altogether, these results suggest that ancestry-associated DEGs in the human brain are strongly 

associated with the brain-specific immune response, and specific direction of effects vary according to 

brain region.  

Sharing of genetic ancestry-associated expression differences across the brain 

To understand the regional specificity of global ancestry-associated differentially expressed features, 

we compared DEGs from each brain region and observed extensive sharing across regions. 

Specifically, we observed 1,210 DEGs (47.1%) shared between at least two brain regions, where all 

pairwise overlaps demonstrated significant enrichment (Fisher’s exact test, p-value < 0.01; Fig. 2C). 

Moreover, 478 DEGs (18.6%) were shared among at least three brain regions with a significant 

overlap of 112 of these DEGs (4.4%; Monte Carlo simulation, p-value < 1e-5) across all four brain 

regions.  

Interestingly, 27 of the 112 shared DEGs (24%) showed discordant direction of effect in at least one 

of the four brain regions. This correlated well with the pairwise correlation of shared DEGs that 

shared direction of effect (70% to 82%; Fig. 2D). While shared direction of effect across brain regions 

was relatively high, this proportion of sharing dropped substantially when effect size was taken into 

account (0.22 to 0.44; Fig. 2D). Corresponding with the large proportion of discordant DEGs, we also 

found a large number of brain region-specific DEGs (1360 [52.9%]; Fig. 2E), which increased when 

considering isoform-level analysis (transcript [63.6%], exon [67.6%], and junction [69.7%]). This is 

consistent with other studies that show isoform-level brain region specificity (28). 
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Fig. 2: Extensive ancestry-associated expression changes across the brain region. A. Circos plot 

showing ancestry DEGs across the caudate (red), dentate gyrus (blue), DLPFC (green), and 

hippocampus (purple). B. Gene set enrichment analysis (GSEA) of differential expression analysis 

across brain regions, highlighting terms associated with increased AA (African ancestry) or EA 

(European ancestry) proportions. C. UpSet plot showing large overlap between brain regions. Green 

is shared across the four brain regions; blue, shared across three brain regions; orange, shared between 

two brain regions; and black, unique to a specific brain region. * Indicating significant pairwise 

enrichment (Fisher’s exact test) or significant overlap between all four brain regions (Monte Carlo 

simulation). D. Heatmaps of the proportion of ancestry DEG sharing with concordant direction (sign 

match; top) and within a factor 0.5 effect size (bottom) E. Metaplot showing examples of brain 

region-specific ancestry effects. 



HLA region and immune cell composition play a limited role on ancestry-

associated expression differences across the brain 

Given the primary enrichment signal for immune-related pathways and cell types, we next 

investigated if immune variation was driving the observed transcriptional changes. Initially, we 

examined enrichment of ancestry-associated DEGs for the major histocompatibility complex (MHC) 

region. Here, we found global ancestry-associated DEGs of the caudate, DLPFC, and hippocampus 

enriched for HLA class II, while dentate gyrus enriched for Zinc finger proteins associated with the 

extended class I MHC region (Fisher’s exact test, FDR < 0.05; Fig. S15). While we found limited 

enrichment of local ancestry-associated DEGs for gene clusters of the MHC region across brain 

regions, we still observed significant enrichment of HLA class II genes for the caudate similar to 

global ancestry DEGs (Fisher’s exact test, FDR < 0.05; Fig. S16). Altogether, these results suggest 

that ancestry-associated DEGs (global and local) within the MHC region are primarily enriched for 

HLA class II genes. 

Next, we re-examined functional enrichment of ancestry-associated DEGs after removing the MHC 

region (i.e., HLA-specific genes, MHC region, and extended MHC region) to determine if the limited 

MHC enrichment drove functional enrichment of immune-related pathways of our ancestry-associated 

DEGs. After excluding the HLA genes, we still observed strong enrichment for immune-related 

pathways (Fig. S17). Furthermore, we observed similar immune-related enrichment (i.e., response to 

virus, interleukin-12 production, macrophage activation, leukocyte migration, and innate immune 

response) after excluding the MHC region (Fig. S18) or the extended MHC region (Fig. S19) across 

brain regions. This was also the case with local ancestry DEGs (Fig. S20), suggesting that the 

extended MHC region does not drive ancestry-associated DEG enrichment of immune-related 

pathways. 

Although the MHC region did not appear to drive our immune response enrichment, immune 

variation either from HLA gene diversity or glial cell composition could still contribute to the 

transcriptional changes observed in our ancestry-associated DEGs. As such, we next assessed to what 

degree HLA variation or glial cell composition contributed to the expression changes. To assess glial 

cell composition, we added glial cells composition (astrocytes, microglia, macrophage, 

oligodendrocytes, oligodendrocyte progenitor cells, and T cells) as covariates in our DE model. When 

we compared effect sizes with the original model, we found a high degree of correlation (Spearman; 

rho from 0.81 to 0.92; Fig. S21A), suggesting glial cell composition had a minimal effect. For HLA 

variation, we added the first five PCs of imputed HLA alleles (accounting for 66% of variance 

explained) as covariates and compared effect sizes with our original model. Similar to glial cell 

composition, we found HLA genetic variation only minimally changed effect sizes (Spearman; rho 

from 0.83 to 0.87; Fig. S21B). Altogether, these sensitivity analyses suggest that immune variation 

contributes only minimally to transcriptional changes for ancestry-associated DEGs. 

Ancestry-associated DEGs are evolutionarily less constrained  

With consistent significant enrichment of DEGs and co-expression modules for immune response, we 

hypothesized that this functional connection for the DEGs with a cellular biology that is uniquely 

adaptable would render them more likely to be tolerant of phenotypic consequences of gene 

disruption and would therefore be evolutionarily less constrained. To test this hypothesis, we 

examined the gene and transcript constraint scores (29) for the global ancestry-associated DEGs. 

Unsurprisingly, we found significant depletion of DEGs for highly constrained genes (Fisher’s exact 
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test, FDR < 0.0001; Fig. 3A). On the transcript level, we found a similar trend (Fig. 3B) with 

differentially expressed (DE) transcripts associated with less constrained genes. Additionally, we 

observed a significant negative correlation with DEGs signal (lfsr) and gene and transcript constraint 

scores (Pearson, p-value < 0.0001; Fig. 3C). Unsurprisingly, these results suggest that ancestry-

associated DE features are associated with the more rapidly evolving genes as previously seen in 

immunity related genes (30, 31).   
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Fig. 3: Ancestry-associated genes and canonical transcripts are evolutionarily less constrained. 

A. Significant depletion of ancestry DEGs for evolutionarily constrained genes (canonical transcripts) 

across brain regions. Significant depletion/enrichments (two-sided, Fisher’s exact test, FDR corrected 

p-values, -log10 transformed) are annotated within tiles. Odds ratios (OR) are log2 transformed to 

highlight depletion (blue) and enrichment (red). B. Similar trend of depletion of ancestry DE 

transcripts (DETs; all, canonical, and non-canonical) for evolutionarily constrained transcripts across 

brain regions. Odds ratios are log2 transformed to highlight depletion (blue) and enrichment (red). C. 

The mean of ancestry-associated DE feature (i.e., gene and transcript) lfsr as a function of LOEUF 

(loss-of-function observed/expected upper bound fraction) decile shows a significant negative 

correlation for genes (left; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.20, -0.20, -0.21, and -0.21; p-value = 3.0x10-122, 7.6 x 10-113, 8.6x10-126, and 1.2 x 10-

122) and transcripts (right; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.05, -0.05, -0.04, and -0.04; p-value = 8.6x10–13, 1.7x 10–11, 9.0x10–11, and 3.2 x 10–10). 

Error bars correspond to 95% confidence intervals. 



The role of genetic variants on ancestry-associated expression differences in the 

brain 

To assess the contribution of genetic variation to genetic ancestry-associated DEGs, we first mapped 

main effect cis-eQTL in Black American individuals (n=120, 45, 121, and 131 for the caudate, dentate 

gyrus, DLPFC, and hippocampus, respectively) examining genetic variants within +/- 500 kb of each 

feature (gene, transcript, exon, and junction). To improve detection of eQTL, we applied mash and 

identified at least one cis-eQTL for 13,857 genes (“eGenes”) across brain regions (lfsr < 0.05; 

n=10,867 for the caudate; n=11,664 for the dentate gyrus; n=11,173 for the DLPFC; and n=10,408 for 

the hippocampus; Table S4 and Data S6). Of these 13,857 eGenes, the majority (64.1%; Fig. 4A) 

were shared across all brain regions with only about 0.25 to 14.5% showing brain region specificity. 

When we examined the direction of effect, however, this number dramatically increased with more 

than 96% sign matching (Fig. 4B).  

We also examined eQTL whose effects may vary as a function of genetic ancestry. Our examination 

followed a similar model to the main effect analysis but with an interaction term between SNP and 

ancestry proportion. We identified at least one ancestry-dependent cis-eQTL (within +/- 500 kb of 

each feature) for 943 unique genes across brain regions (lfsr < 0.05, n=531, 942, 573, and 531 for the 

caudate, dentate gyrus, DLPFC, and hippocampus, respectively; Fig. S22, Table S5, and Data S7) 

with 54.1% (510 eGenes) shared across the four brain regions (Fig. S23). This relatively limited 

detection of ancestry-dependent eQTL supports other work showing high correlation of causal effects 

across local ancestry of admixed individuals (32). 

We next tested whether these eGenes (main effect and ancestry-dependent) were likely to be 

differentially expressed by genetic ancestry. Across brain regions, we found significant enrichment 

(Fisher’s exact test, FDR < 0.05) of these eGenes (lfsr < 0.05) with ancestry-associated DEGs (lfsr < 

0.05; Fig. 4C and Fig. S23C). Given the potential correlation of genotypes with eGenes and ancestry 

inference, we also examined allele frequency differences between DEGs and non-DEGs. We found a 

significant increase in allele frequency differences for DEGs compared with non-DEGs (Mann-

Whitney U, p-value < 0.05; Fig. 4D and Fig. S24) across brain regions. These results suggest that a 

genetic component is likely influencing these expression differences, potentially due to divergence in 

allele frequencies.  

To test this possibility, we imputed gene expression levels from genotypes using an elastic net model, 

and then examined the correlation between the observed genetic ancestry effect from our ancestry DE 

analysis and the predicted genetic ancestry effect computed from the predicted expression levels 

across samples. Unsurprisingly, eGenes showed higher prediction accuracy than non-eGenes; 

interestingly, however, eGenes with an ancestry difference in gene expression had a stronger genetic 

component (higher R2) than eGenes without an ancestry difference across the four brain regions 

(Fig. S25). Furthermore, the imputed gene expression levels explained an average of 59.5%, 58.7%, 

56.8%, and 56.8% of the variance in genetic ancestry effect sizes across the caudate, dentate gyrus, 

DLPFC, and hippocampus, respectively (Fig. 4E). This variance explained generally increased on the 

isoform level (transcript [R2 = 50.8%±7.0%], exon [R2 = 61.6%±4.1%], and junction [R2 = 

62.6%±5.1%]; Fig. S26) across brain regions. In contrast, the genetic variant for the top main effect 

eQTL associated with these genes explained on average ~20% of the variance in genetic ancestry 

effect sizes with a similar proportion for the isoform level (Fig. S27). Thus, genetic variants 

contributed to nearly 60% of the observed genetic ancestry in gene expression – and variant effects on 

alternative splicing were even greater. 
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Fig. 4: Genetic contribution of genetic ancestry differences in expression across the brain. A. 

UpSet plot showing large overlap between brain regions of eGenes. B. Heatmap of the proportion of 

ancestry DEG sharing with concordant direction (sign match). C. Significant enrichment of ancestry-

associated DE genes for eGenes (unique gene associated with an eQTL) across brain regions 

separated by direction of effect (increased in AA or EA proportion). D. Density plot showing 

significant increase in absolute allele frequency differences (AFD; one-sided, Mann-Whitney U, p-

value < 0.05) for global ancestry-associated DEGs (red) compared with non-DEGs (blue) across brain 

regions. A dashed line marks the mean absolute AFD. Absolute AFD calculated as the average 

absolute AFD across a gene using significant eQTL (lfsr < 0.05). E. Correlation (two-sided, 

Spearman) of elastic net predicted (y-axis) versus observed (x-axis) ancestry-associated differences in 

expression among ancestry-associated DEGs with an eQTL across brain regions. A fitted trend line is 

presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in light 

gray. 

Differential gene expression in a binary contrast of Black and White Americans 

To extend our analysis of DEGs driven by genetic ancestry, we performed a binary analysis of 

combined Black and White American samples (Table S6) – the latter showing very little admixture of 

African ancestry (STRUCTURE; African ancestry mean = 0.03, range = 0-0.16; Fig. S1). Using these 

American samples, we selected individuals with relatively limited admixture (Black Americans ≥ 0.8 

African genetic ancestry and White Americans > 0.99 European genetic ancestry) across the caudate, 

dentate gyrus, DLPFC, and hippocampus. To limit the influence of the larger sample size for this 



binary analysis (Black American vs White American), we randomly sampled ten times without 

replacement to approximate the admixed Black American-only analysis sample size (caudate, n=122 

[61 each]; dentate gyrus, n=46 [23 each]; DLPFC, n=124 [62 each]; and hippocampus, n=134 [67 

each]). We identified more than double as many ancestry-associated DEGs (5,324 unique genes, 

median lfsr < 0.05; Fig. S28A, Table S7, and Data S8) representing 28% of all genes tested across 

the caudate (n=2,877), dentate gyrus (n=2,219), DLPFC (n=3,318), and hippocampus (n=2,818) with 

similar immune system enrichment patterns (Fig. S28B and Data S9).  

We next compared the binary analysis DE results (genes, transcripts, exons, and junctions) with the 

admixed Black American-only results. While we found a significant overlap of ancestry associated 

DE features (Fisher’s exact test, p-value < 0.0001), approximately 72% of features (3847 unique 

genes) were unique to the binary DE results (Fig. S29). Even so, effect sizes from binary analysis 

were significantly correlated (Spearman, rho = 0.43 to 0.49, p-value < 0.0001; Fig. S30) with effect 

sizes from admixed Black American-only analysis across features and brain regions, which increased 

when we examined only shared features (Spearman, rho = 0.60 to 0.66, p-value < 0.0001; Fig. S31). 

While these results confirm most of the ancestry-associated DEGs in the Black American sample 

alone, they also highlight additional ancestry-related factors that influence gene expression 

presumably including environmental events (i.e., epigenetic).  

Environmental contributions to global ancestry-associated differential expression 

Our binary DE analysis of Black and White Americans suggests that environmental factors may also 

contribute to global ancestry-associated DEGs. To identify DEGs driven by environmental factors, we 

used DNAm as an environmental proxy in Black Americans. We began by identifying the top 1% of 

variable CpGs that are likely driven by unknown environmental factors. We identified these CpGs by 

removing variation attributable to batch and to unknown technical and biological factors as captured 

by the top five DNAm principal components, while preserving variation due to global ancestry. We 

then grouped those top variable CpGs into variable methylated regions (VMRs) for the caudate (89 

samples; 12,051 VMRs), DLPFC (69 samples; 9,701 VMRs), and hippocampus (69 samples; 9,924 

VMRs). In contrast to our DE analysis results, we identified fewer VMRs that were differentially 

methylated regions (DMRs) for global ancestry (FDR < 0.05; n=3, 1, and 8 for the caudate, DLPFC, 

and hippocampus, respectively). However, we identified a larger number of local ancestry-associated 

DMRs (FDR < 0.05; n=494, 260, and 265 for the caudate, DLPFC, and hippocampus, respectively; 

Fig. 5A).  

We reasoned that the difference in DMRs linked to global and local ancestry can be explained both 

biologically and statistically. Biologically, DNAm tends to be more influenced by local genetic 

variations. Statistically, local ancestry is more variable than global ancestry, which results in a higher 

power to detect DNAm differences and a smaller standard deviation in estimated effect size. This is 

demonstrated in Fig. S32 and Data S12, where we compared DNAm levels against local ancestry and 

global ancestry levels for VMRs associated with local ancestry. Even so, we find significant 

correlation between local and global ancestry-associated DMRs (Fig. S33). Functional enrichment 

analysis of local ancestry-associated DMRs suggested that these DMRs were enriched for gene sets 

related to immune functions across all three brain regions (Fig. 5B), consistent with the functional 

enrichment results of ancestry-associated DEGs. 

We next regressed out known biological factors (local ancestry, age, sex), as well as the potential 

batch effects and other unknown biological factors captured by the top five principal components of 

DNAm levels for each VMR. We used PST estimates (18) to provide a measure of proportion of 
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overall gene expression variance explained by between-population differences. PST values range from 

0 to 1, where values close to 1 imply the majority of expression variance is due to differences between 

populations. We defined deltaPST (ΔPST) as the difference between PST values before and after 

regressing out the effect of VMRs associated with each gene. Therefore, ΔPST quantifies the 

proportion of ancestry-associated DEGs that are likely due to environmental exposures. Using this 

method, we found that across brain regions the average ΔPST was 15% (12.2%, 14.4%, and 18.3% for 

the caudate, DLPFC, and hippocampus, respectively; Fig. 5C). Altogether, these results imply that 

unknown environmental exposures measured by DNAm provide a minor contribution to the observed, 

primarily immune-related expression differences in our Black American neurotypical sample. 

 

 

Fig. 5: Unknown environmental factors are primary drivers of nearby global ancestry-

associated DEGs. A. Circos plot showing local ancestry-associated DMRs across the caudate (red), 

DLPFC (blue), and hippocampus (green). Methylation status is annotated in red for hypermethylation 

and blue for hypomethylation. B. Gene term enrichment of DMRs across brain regions. C. 

Histograms showing distribution of ΔPST associated with the impact of unknown environmental 

factors as captured by residualized VMR (corrected by local ancestry, age, sex, and unknown 

biological factors captured by PCA) for nearby global ancestry-associated DEGs. A dashed line marks 

the mean ΔPST. A solid line shows the density overlay.  



Association of ancestry-associated expression differences with immune- and 

brain-related traits 

We reasoned that ancestry-associated DEGs may contain risk genes that explain susceptibility of 

brain-related illnesses based on ancestry. To explore this hypothesis, we conducted stratified LD score 

regression (S-LDSC) to assess the polygenic contributions of global ancestry-associated DEGs to 17 

brain-related traits (e.g., ADHD, autism, BMI, depression, and schizophrenia) (33). As our ancestry-

associated DEGs were enriched for gene sets related to immune functions, we included five immune-

related traits as a positive control in our S-DLSC analysis. Overall, we observed that ancestry-

associated DEGs were enriched for heritability of neurological disorders and immune-related traits 

but not for psychiatric disorders and behavioral traits (Fig. 6, Fig. S34, and Data S10). This also 

included limited enrichment of peripheral immune function (34–36) (Fisher’s exact test, FDR < 0.05; 

Fig. S35), which is consistent with our previous enrichment showing a greater association with brain 

immune cell types compared to non-brain immune cell types (Fig. S12). 

Specifically, we found enrichment for heritability of ischemic stroke (enrichment fold = 1.5, FDR = 

0.009) for ancestry-associated DEGs in the DLPFC, accounting for 26% of total heritability 

(Fig. S34). This enrichment was mainly driven by DEGs associated with an increase in AA proportion 

(enrichment fold = 1.7, FDR = 0.013), but not to EA (enrichment fold = 1.2, p-value = 0.2). 

Furthermore, stratified analysis by protein-coding and non-coding DEGs showed that enrichment was 

primarily driven by protein-coding DEGs, but not non-coding DEGs (Fig. 6). We observed stronger 

enrichment of ischemic stroke for protein-coding DEGs in the DLPFC (increased AA proportion; 

enrichment fold = 2.1, FDR = 0.011). This finding is consistent with epidemiological data that Black 

Americans are up to 50% more likely to experience ischemic stroke, and Black men are up to 70% 

more likely to die from stroke compared to non-Hispanic White men (37, 38). Moreover, our cell-type 

enrichment analysis showed that the DEGs associated with increased AA proportion were enriched 

for vascular smooth muscle cells, endothelial cells, and pericytes (Fig. S10), all of which may 

contribute to vascular pathology implicated in stroke. 

In addition to ischemic stroke, we also found enrichment for heritability of Parkinson’s disease 

(enrichment fold = 1.6, FDR = 0.025) for ancestry-associated DEGs in the DLPFC, accounting for 

27% of disease heritability (Fig. S34). Interestingly, this enrichment was primarily driven by DEGs 

that were increased with EA proportion (enrichment fold = 1.9, FDR = 0.032), but not to AA 

proportion (enrichment fold = 1.3, p-value = 0.23). Again, this enrichment for Parkinson’s disease in 

the DLPFC was driven by protein-coding DEGs (increased EA proportion; enrichment fold = 2.3, 

FDR = 0.038; Fig. 6). This finding echos epidemiological studies suggesting that the prevalence of 

Parkinson’s disease is greater in White Americans compared with Black Americans (39). 

Additionally, cell-type enrichment analysis for DEGs associated with increased EA proportion 

showed enrichment for cell-type-specific genes related to the microglia, astrocytes, and 

oligodendrocyte progenitor cells (Fig. S10). Interestingly, we also found ancestry-associated glial cell 

subtypes (i.e., astrocyte [AST7] and oligodendrocyte lineage [OPC1]) significantly enriched for 

Parkinson’s disease heritability (enrichment fold > 2.0, FDR < 0.01; Fig. S36), suggesting a potential 

role for specific glial subtypes in the pathogenesis of Parkinson’s disease. 

We also observed enrichment for heritability of Alzheimer's disease for ancestry-associated DEGs 

across DLPFC, hippocampus and caudate accounting for 26%, 23% and 30% of total heritability, 

respectively (Fig. S34). These enrichments were mainly driven by protein-coding DEGs associated 

with an increase in AA proportion for the DLPFC (enrichment fold = 2.0, FDR = 0.013; Fig. 6) and 
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hippocampus (enrichment fold = 1.9, FDR = 0.02; Fig. 6). Surprisingly, we found the opposite effect 

with an increase in EA proportion for the caudate when considering all DEGs (Fig. S34), which 

disappeared when considering only protein coding or non-protein coding DEGs (Fig. 6). Cell-type 

enrichment analysis of astrocytes, however, shows ancestry-specific effects consistent with this 

finding for the caudate (increased EA proportion; Fig. S10). Moreover, we found ancestry-associated 

glial cell subtypes (i.e., microglia [MG0] and astrocyte [AST1 and AST7]) significantly enriched for 

Alzheimer’s disease heritability (enrichment fold > 2.2, FDR < 0.01; Fig. S36) and ancestry-

associated DEGs enrichment for multiple activated microglia states (40) (Fig. S37A). Interestingly, 

these microglia states were associated with mouse Alzhiemer’s disease-associated microglial genes 

and Alzhiemer’s disease GWAS signals (Fig. S37B). We also observed significant enrichment of 

ancestry-associated DEGs primarily with Alzheimer’s disease-related DEGs between early 

Alzheimer’s and late Alzheimer’s (late response; Fig. S38).  

In contrast, we observed significant depletion in heritability for several brain-related traits (e.g., 

education years, smoking initiation, age of smoking, schizophrenia, and depression; enrichment fold < 

1, FDR < 0.05; Fig. 6, Fig. S34, and Data S10) of our ancestry-associated DEGs across brain regions. 

These results are consistent with our observations that ancestry-associated DEGs are depleted for gene 

sets related to the neuronal functions that are believed to play major roles in psychiatric disorders and 

behavior traits.  
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Fig. 6: Global ancestry-associated DEGs stratified by coding or non-coding DEGs show general 

enrichment for heritability of several neurological and immune-related traits, but depleted for 

brain-related behavioral traits. Heatmap for ancestry-associated DEGs that show enrichment (red) 

or depletion (blue) for heritability of brain- and immune-related traits from S-LDSC analysis. 

Significant enrichment for heritability traits disappears when limited to non-coding DEGs. Numbers 

within tiles are levels of enrichment (> 1) or depletion (< 1) that are significant after multiple testing 

correction (FDR < 0.05). The left panel shows results for all DEG in each brain region. The middle 

and right panels show results for DEG increased with AA or EA proportions for each brain region, 

respectively. 

  



Discussion 

Here we provide the first detailed characterization of the impact of genetic ancestry on expression and 

DNA methylation in the human brain. Using admixed Black American donors, we have identified 

thousands of genomic features (i.e., genes, transcripts, exons, and junctions) associated with genetic 

ancestry and demonstrated that these features are evolutionarily less constrained. Approximately 60% 

of these ancestry-associated DEGs are associated with genetic variations. Our data show consistent 

enrichment for immune response pathways for genetic ancestry-associated DEGs and consistent 

absence of ancestry associations with neuronal functions. Furthermore, we found similar trends when 

we examined local genetic ancestry. Even so, given expression heritability is dominated (i.e., about 

70%) by many small trans effects (41, 42), we have chosen to focus primarily on global genetic 

ancestry. 

Interestingly, our findings show the direction of enrichment varies by brain region for immune-related 

pathways, increasing in relation to AA proportion in caudate and increasing in relation to EA 

proportion in the other regions. Because the specific genes in these immune function sets vary 

somewhat across regions, it is tempting to speculate on 1) how genetics and the environment sculpt 

variation in this regional biology and 2) whether the functional and behavioral impact of these 

ancestry-associated DEGs depends on the biology of particular brain regions. However, there is no 

simple “up or down” bias to the functional associations independent of brain region. For example, if 

AA proportion is a risk factor to immune response in the caudate, then by the same reasoning AA 

proportion would be a protector factor for immune response in the hippocampus and prefrontal cortex. 

We considered that differences in directionality across regions may reflect variation in cell 

composition as the caudate was the only brain region without a laminar architecture. However, 

laminar architecture in the brain has generally implicated neuronal biology (43), which was not the 

case here (i.e., enrichment of immune-related pathways). Notably, virtually all of our findings are 

more significant at the isoform level, implicating gene splicing and processing as a more incisive 

method for explaining the effect of ancestry on gene expression.  

Among the more striking findings of our data is the enrichment of heritability for neurological brain 

illness among ancestry-associated DEGs. Small vessel stroke and ischemic stroke are up to 50% more 

frequent in Black Americans (37, 38), and here we show that heritability for stroke was enriched 

among DEGs that were increased in proportion to AA in our admixed Black population. In contrast, 

heritability for Parkinson’s disease, which is more prevalent in White Americans (39), was enriched 

among DEGs in proportion to EA. Interestingly, we observed a nearly two-fold enrichment for 

heritability of Alzheimer’s disease among DEGs that were increased with AA proportion in DLPFC 

and hippocampus, regions cardinally involved in Alzheimer’s disease. This observation echoes the 

fact that Alzheimer’s disease is twice as prevalent in Black Americans (44, 45). However, general 

enrichment of DEGs for Alzheimer’s disease in the caudate associated with an increase in EA 

proportion highlights the potential regional complexity of the disorder in the brain as caudate is not 

generally considered a site of Alzheimer’s disease pathology. Ancestral DEGs increase heritability for 

several immune disorders and traits but not specifically in relation to either ancestry across the brain. 

It is noteworthy that the DEGs are not linked with heritability of psychiatric disorders and related 

behavioral traits, perhaps consistent with genes associated with these traits being especially enriched 

in neurons, which were again, conspicuously lacking in DEGs based on ancestry. 

In addition to our analysis of the admixed Black American population, we also performed a combined 

analysis with White Americans. As an internal validation, we found significant overlap between this 
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and our Black American-only analyses (i.e., DE), but a dramatic increase in the extent of differentially 

expressed features. Additionally, this combined analysis (Black and White Americans) revealed 

similar enrichment of the immune response, again in analogous alternating directionality depending 

on brain region. While these results implicate environmental exposures that might reflect systematic 

differences between the two ancestral groups, disambiguating genetic from environmental factors in 

this context is challenging. We, therefore, chose to examine the environmental impact on our Black 

American-only global ancestry-associated DEGs. To this end, we identified thousands of VMRs 

across the brain in this context.  

To highlight those VMRs likely enriched for environmental influence, we focused on the top 1% of 

VMRs and looked for ancestry-associated DMRs within these genomic regions. Consistent with DE 

analysis, we found that local ancestry DMRs were enriched for genomic regions related to immune 

functions. When we used VMRs as an environmental proxy to examine the effect of environmental 

exposures on the DEGs, we found they explained, on average, roughly 15% of population differences 

in gene expression. Although we used local ancestry to correct for genetic background, we cannot be 

sure that the variation captured via methylation is solely attributed to environmental factors or that 

methylation can capture all environmental factors. A limitation of this study is the lack of social 

determinants of health information, which could have directly measured specific environmental 

exposures instead of using DNAm as a proxy. Nevertheless, our analyses demonstrate the potential to 

limit the impact of potentially systematic environmental factors by leveraging admixture populations 

for genetic ancestry analyses. 

This enrichment in immune-related pathways is not altogether unexpected: a previous study showed 

population differences in macrophages associated with the innate immune response to infection (18). 

Furthermore, it is well documented that genetic variation is an important contributor to immune 

variation (46–48) and immune cell function (34–36). This research is particularly important for 

neuropsychiatric disorders (including schizophrenia, autism spectrum disorder, and Alzheimer’s 

disease) where the immune system has been implicated (49–51). Many of these neuropsychiatric 

disorders also show a racial health disparity (44, 52–54). As a result, we examined our enrichment of 

immune function in more detail. Interestingly, we found little evidence that the MHC region, HLA 

variation, or glial cell composition drove our identified immune-response pathway enrichment. 

Additionally, we found stronger enrichment of brain immune compared with peripheral immune cell 

types, suggesting the potential involvement of a brain-specific immune response of these DEGs. 

Altogether, our results provide a starting point for further investigation for potential therapeutic 

interventions involving the immune response – therapeutic interventions that could address these 

health disparities. 

In summary, we provide a detailed examination of the genetic and environmental contributions to 

genetic ancestry transcriptional changes in the brain. We leveraged genetic diversity within admixture 

populations to limit environmental confounders, resulting in converging evidence of the immune 

response in genetic ancestry-associated transcriptional changes in the brain. The research we have 

provided here substantively furthers our understanding of the contribution of genetic ancestry in the 

brain, opening new avenues to the development of ancestry-aware therapeutics and paving the way for 

equitable, personalized medicine.  
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Figure captions 

Fig. 1: Study design for the examination of the genetic and environmental contributions to 

genetic ancestry-associated expression differences. BA stands for Black Americans and WA for 

White Americans. 

Fig. 2: Extensive ancestry-associated expression changes across the brain region. A. Circos plot 

showing ancestry DEGs across the caudate (red), dentate gyrus (blue), DLPFC (green), and 

hippocampus (purple). B. Gene set enrichment analysis (GSEA) of differential expression analysis 

across brain regions, highlighting terms associated with increased AA (African ancestry) or EA 

(European ancestry) proportions. C. UpSet plot showing large overlap between brain regions. Green 

is shared across the four brain regions; blue, shared across three brain regions; orange, shared between 

two brain regions; and black, unique to a specific brain region. * Indicating significant pairwise 

enrichment (Fisher’s exact test) or significant overlap between all four brain regions (Monte Carlo 

simulation). D. Heatmaps of the proportion of ancestry DEG sharing with concordant direction (sign 

match; top) and within a factor 0.5 effect size (bottom) E. Metaplot showing examples of brain 

region-specific ancestry effects. 

Fig. 3: Ancestry-associated genes and canonical transcripts are evolutionarily less constrained. 

A. Significant depletion of ancestry DEGs for evolutionarily constrained genes (canonical transcripts) 

across brain regions. Significant depletion/enrichments (two-sided, Fisher’s exact test, FDR corrected 

p-values, -log10 transformed) are annotated within tiles. Odds ratios (OR) are log2 transformed to 

highlight depletion (blue) and enrichment (red). B. Similar trend of depletion of ancestry DE 

transcripts (DETs; all, canonical, and non-canonical) for evolutionarily constrained transcripts across 

brain regions. Odds ratios are log2 transformed to highlight depletion (blue) and enrichment (red). C. 

The mean of ancestry-associated DE feature (i.e., gene and transcript) lfsr as a function of LOEUF 

(loss-of-function observed/expected upper bound fraction) decile shows a significant negative 

correlation for genes (left; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.20, -0.20, -0.21, and -0.21; p-value = 3.0x10-122, 7.6 x 10-113, 8.6x10-126, and 1.2 x 10-

122) and transcripts (right; for the caudate, dentate gyrus, DLPFC, and hippocampus: two-sided, 

Pearson, r = -0.05, -0.05, -0.04, and -0.04; p-value = 8.6x10–13, 1.7x 10–11, 9.0x10–11, and 3.2 x 10–10). 

Error bars correspond to 95% confidence intervals. 

Fig. 4: Genetic contribution of genetic ancestry differences in expression across the brain. A. 

UpSet plot showing large overlap between brain regions of eGenes. B. Heatmap of the proportion of 

ancestry DEG sharing with concordant direction (sign match). C. Significant enrichment of ancestry-

associated DE genes for eGenes (unique gene associated with an eQTL) across brain regions 

separated by direction of effect (increased in AA or EA proportion). D. Density plot showing 

significant increase in absolute allele frequency differences (AFD; one-sided, Mann-Whitney U, p-

value < 0.05) for global ancestry-associated DEGs (red) compared with non-DEGs (blue) across brain 

regions. A dashed line marks the mean absolute AFD. Absolute AFD calculated as the average 

absolute AFD across a gene using significant eQTL (lfsr < 0.05). E. Correlation (two-sided, 

Spearman) of elastic net predicted (y-axis) versus observed (x-axis) ancestry-associated differences in 

expression among ancestry-associated DEGs with an eQTL across brain regions. A fitted trend line is 

presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in light 

gray. 

  



Fig. 5: Unknown environmental factors are primary drivers of nearby global ancestry-

associated DEGs. A. Circos plot showing local ancestry-associated DMRs across the caudate (red), 

DLPFC (blue), and hippocampus (green). Methylation status is annotated in red for hypermethylation 

and blue for hypomethylation. B. Gene term enrichment of DMRs across brain regions. C. 

Histograms showing distribution of ΔPST associated with the impact of unknown environmental 

factors as captured by residualized VMR (corrected by local ancestry, age, sex, and unknown 

biological factors captured by PCA) for nearby global ancestry-associated DEGs. A dashed line marks 

the mean ΔPST. A solid line shows the density overlay. 

Fig. 6: Global ancestry-associated DEGs stratified by coding or non-coding DEGs show general 

enrichment for heritability of several neurological and immune-related traits, but depleted for 

brain-related behavioral traits. Heatmap for ancestry-associated DEGs that show enrichment (red) 

or depletion (blue) for heritability of brain- and immune-related traits from S-LDSC analysis. 

Significant enrichment for heritability traits disappears when limited to non-coding DEGs. Numbers 

within tiles are levels of enrichment (> 1) or depletion (< 1) that are significant after multiple testing 

correction (FDR < 0.05). The left panel shows results for all DEG in each brain region. The middle 

and right panels show results for DEG increased with AA or EA proportions for each brain region, 

respectively.  



Supplementary materials 

Material & Methods 

The research described herein complies with all relevant ethical regulations. Additionally, we declare 

that all specimens used in this study were obtained with informed consent. We obtained informed 

consent from the next kin under protocols No. 12-24 (the Department of Health and Mental Hygiene 

for the Office of the Chief Medical Examiner for the State of Maryland) and No. 20111080 (the 

Western Institutional Review Board for the Offices of the Chief Medical Examiner for Kalamazoo 

Michigan, University of North Dakota in Grand Forks North Dakota, and Santa Clara County 

California). We obtained samples at the Clinical Brain Disorder Branch (CBDB) at the National 

Institute of Mental Health (NIMH) from the Northern Virginia and District of Columbia Medical 

Examiners’ Office, according to NIH Institutional Review Board guidelines (Protocol #90-M-0142). 

The LIBD received the tissues by donation under the terms of a material transfer agreement. The 

Institutional Review Board of the University of Maryland at Baltimore and the State of Maryland 

approved the study protocols that collected these brain regions (10–12). Details of case selection, 

curation, diagnosis, and anatomical localization and dissection can be found in previous publications 

from our research group (10–12).  

BrainSeq consortium RNA-sequencing data processing 

We surveyed covariates, FASTQ files, SNP array genotypes, RNA degradation metrics obtained with 

the qSVA methodology (20), phenotype information, and raw counts (gene, transcript, exon, and 

exon-exon junction) for the caudate, dentate gyrus, DLPFC, and hippocampus from the BrainSeq 

Consortium (10, 12) and http://research.libd.org/dg_hippo_paper/data.html (11).  

BrainSeq consortium genotype imputation 

General imputation 

Samples were genotyped and imputed as part of the full LIBD cohort, using procedures as previously 

described (10, 12, 13). Briefly, samples were genotyped on four different types of Illumina 

microarrays over the years (HumanHap650, Human1M, HumanOmni2.5, or HumanOmni5-Quad 

BeadChips). We merged samples genotyped by the same type of microarray and followed standard 

pre-imputation quality control (QC) to remove low quality (Hardy-Weinberg equilibrium p-value < 

1×10-6) and low frequency (minor allele frequency [MAF] < 0.005) variants. We converted genotype 

positions from hg19 to hg38 with liftOver (56). Once converted, we imputed genotypes, separately by 

genotyping array, on the Trans-Omics for Precision Medicine (TOPMed) imputation server (7, 57, 58) 

using the Haplotype Reference Consortium (HRC) reference panels. We phased genotypes per 

chromosome using eagle (version 2.4; (59)). We performed post-imputation QC of each imputed 

dataset for Black and White American samples separately.  

We filtered out variants with low-quality imputation scores (R2 < 0.8) and removed variants: 1) MAF 

less than 0.05, 2) missing call frequencies greater than 0.1, or 3) Hardy-Weinberg equilibrium below 

p-value of 1e-10 using PLINK2 (version 2.00a3LM; (60)). We then merged imputed genotypes across 

four genotyping platforms based on overlapping filtered imputed variants. This resulted in 6,225,756 

and 6,097,532 common variants for Black and White American donors, respectively. 
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HLA imputation 

For HLA allele imputation, we extracted the extended MHC region on chromosome 6 from pre-

imputed QC’d, genotypes (hg38) by genotype array (see General imputation) with PLINK2. We 

performed HLA imputation on the Michigan Imputation Server (57) using the four-digit, multi-ethnic 

HLA imputation reference panel (version 2) (61). Similar to general imputation, we phased genotypes 

using eagle on the server. Following imputation, we filtered low-quality imputation scores (R2 < 0.7) 

per genotype array with BCFtools (version 1.13; (62)). We then merged imputed genotypes across the 

four genotyping arrays with BCFtools and extracted HLA alleles from the VCF file. This resulted in a 

total of 2,850 HLA alleles. 

BrainSeq consortium DNA methylation data processing 

We generated WGBS datasets in our previous studies for three adult brain regions (DLPFC, 

hippocampus and caudate). Details about study samples, data generation, and data processing have 

been described in our prior reports (14, 63). Briefly, we assessed quality control with FastQC. 

Following assessment with FastQC, we removed adapter content with Trim Galore (64). We aligned 

trimmed reads with Arioc (65) to the hg38 genome build (GRCh38.p12) and removed duplicate 

alignments with SAMBLASTER (66). After removing duplicates, we filtered alignments with 

samtools (67) (v1.9) to include only primary alignments with a mapping quality (MAPQ) ≥ 5. From 

these filtered alignments, we extracted methylation data using Bismark methylation extractor (68). 

Following methylation extraction, we processed and combined DNA methylation proportions across 

samples using bsseq (version 1.18; (69)), an R/Bioconductor package. We locally smoothed 

methylation data with BSmooth using default parameters. We filtered the resulting CpG data to 

remove: 1) CpGs within the blacklist regions and 2) CpGs with coverage < 3. 

Subject selection and details 

We selected samples per brain region using five common inclusion criteria: 1) RiboZero RNA-

sequencing library preparation, 2) recent African ancestry, 3) TOPMed imputed genotypes available, 

4) adults (age > 17) and 5) diagnosis of neurotypical control. This resulted in a total of 425 samples 

from 151 unique individuals across the caudate (n=121), dentate gyrus (n=47), DLPFC (n=123), and 

hippocampus (n=133). Subject details are summarized in Table S1. 

Estimation of genome-wide admixture levels  

We estimated the admixture proportion for each individual based on SNPs that were informative with 

respect to ancestry using the STRUCTURE program. We selected 1,634 such SNPs based on genetic 

information downloaded from the 1000 Genomes CEU (Northern Europeans from Utah) and AFR 

(African ancestry superpopulation, including Esan, Gambian, Luhyu, Mende, and Yoruba 

populations) samples. Markers were chosen based on the following criteria: 1) absolute difference (δ) 

in allele frequency between the two ancestry populations > 0.5; 2) r2 between each pair of SNPs < 0.1 

within each population; 3) p-value > 0.01 for testing Hardy-Weinberg equilibrium within each 

population; and 4) successfully imputed in our brain samples (info > 0.8). The structure was run 

within a two-ancestry population model with 5,000 burn in and 10,000 iterations. 

Estimation of local ancestry 
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We used RFMIX (70), a discriminative modeling approach for rapid and robust local-ancestry 

inferences, to infer local ancestry in our admixed samples using the European and African ancestry 

samples from the 1000 Genomes project (71) as reference. We extracted the posterior probability of 

African ancestry at each SNP per haplotype from the Forward–Backward output of RFMIX. Local 

ancestry for a genomic region was then estimated as the average African ancestry across all SNPs 

within the region. As RFMIX also computed and output a global ancestry estimate for each sample, 

we compared global ancestry estimates between STRUCTURE and RFMIX and observed a high 

correlation between estimates from the two programs (Spearman correlation, rho = 0.99).  

Differential expression analysis 

Cell-type deconvolution analysis 

Deconvolution was performed with the ReferenceBasedDecomposition function from the R package 

BisqueRNA version 1.0.4 (72), using the use.overlap = FALSE option. The single cell reference data 

set used is single nucleus RNA-seq from the 10X protocol, which includes tissue from eight donors 

and five brain regions (27). The ten cell types considered in the deconvolution of the tissue were 

astrocytes (Astro), endothelial (Endo), microglia (Micro), macrophage (Macro), mural cells (Mural), 

oligodendrocytes (Oligo), oligodendrocyte progenitor cells (OPC), T cells (Tcell), excitatory neurons 

(Excit), and inhibitory neurons (Inhib). Marker genes were selected by first filtering for genes 

common between the bulk data and the reference data and then calculating the ratio of the mean 

expression of each gene in the target cell type over the highest mean expression of that gene in a non-

target cell type. The 25 genes with the highest ratios for each cell type were selected as markers.  

Quality control and identification of relevant confounders 

To evaluate potential sources of confounding for expression and genetic ancestry, we first correlated 

technical and RNA quality variables available from the downloaded R variables and removed highly 

correlated variables (Pearson, r > 0.95) present in two or more brain regions. Following this, we 

retained variables common across the four brain regions. In addition to these variables, we also 

accounted for hidden variables using the downloaded qSVA (Fig. S39 and Equation 1; k=13, 6, 9, 

and 14, for the caudate, dentate gyrus, DLPFC, and hippocampus, respectively). We have found qSVs 

also accurately correct for observed variables like batch effect and cell-type composition (12, 20).  

 

Equation 1 

Given the potential influence of cell composition on gene expression, we also examined cell-type 

proportion associated with genetic ancestry and any potential confounding effects on gene expression. 

To this end, we performed cell-type deconvolution (Data S13). When we examined the Black 

American population, we found that the majority of cell types across brain regions showed no 

correlation with genetic ancestry (Fig. S40), and only oligodendrocytes in the DLPFC showed a 

significant association (Spearman, p-value < 0.05) with genetic ancestry. In contrast, when we 

included White American donors, we found that seven of the ten cell types showed a significant 

association (Spearman, p-value < 0.05) with genetic ancestry in at least one brain region (Fig. S41). 
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These cell-type proportions also showed high correlation with confounders (Fig. S42). As such, our 

model also accounted for cell-type proportions for each brain region (Fig. S43). 

Global ancestry-associated differential expression analysis 

We performed differential expression analysis using mash modeling in R. Initially, we determined 

effect size and standard error of effect size using limma-voom modeling as previously described (12). 

Briefly, we filtered low-expressing genes using filterByExpr from edgeR (73, 74) and normalized 

library size. Next, we applied voom normalization (75) as a model of genetic ancestry adjusted for 

age, RNA quality (mitochondria mapping rate, gene assignment rate, genome mapping rate, rRNA 

mapping rate, and hidden variance using qSVA; Equation 1). Following voom normalization, we fit 

the model using eBayes and extracted out effect size (log fold-change) and standard error of effect 

size from the model (Equation 2) by brain region for each feature (gene, transcript, exon, and 

junction).  

  

Equation 2 

Next, we implemented mash modeling using mashr (version 0.2.57) for each feature using the limma-

voom extracted effect sizes and standard errors across brain regions. We learned the correlation 

structure across the brain regions and used all features as an unbiased representation of the results to 

account for overlapping samples. Following this, we calculated the canonical covariances. A strong 

set of features was determined condition by condition using mash_1by1, and data-driven covariance 

was calculated with the strong set of features. Once calculated, we fit the mash model to the full set of 

features and computed the posterior summaries for all features. Features were considered significant if 

they had a lfsr less than 0.05. 

Local ancestry-associated differential expression analysis 

For local ancestry differential expression analysis, we first calculated a local African ancestry score 

per feature (i.e., gene, transcript, exon, and junction). Here, we averaged all haplotypes within a 

200kbp window of each feature using the RFMIX results. Following this estimate of local African 

ancestry per feature, we applied a separate linear model per feature using Equation 1 modified for 

local ancestry. We limited our analysis to features tested for global ancestry differential expression. 

As each model was per feature, we replaced voom normalized with CPM log-normalized counts. We 

fit our model with limma lmFit and extracted effect size and standard error for downstream mash 

modeling as described in “Global ancestry-associated differential expression analysis”. We compared 

local and global ancestry DE results and found large overlap (Fig. S44). 

Expression residualization 

For residualized expression, we regressed out covariates from voom normalized expression using a 

null model (Equation 3) and applied a z-score normalization as previously described (12).  
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Equation 3 

MHC region enrichment 

To examine the contribution of the MHC region for immune-related pathway enrichment, we 

extracted genes within the MHC from hg38 annotation (GENCODE v25). Specifically, we extracted 

genes from the MHC region (chr6:28,510,120-33,480,577) and the extended MHC region 

(chr6:25,726,063-33,400,644) using PyRanges (76) and gtfparse. We further subset the extended 

MHC region for any gene names that started with HLA. Following this, we assessed enrichment for 

the MHC regions (i.e., MHC region, extended MHC region, and HLA genes) using a two-sided, 

Fisher’s exact test. We corrected for multiple testing with Benjamini-Hochberg.  

Public data comparison and enrichment analysis 

For public data comparison, we downloaded the ancestry-associated DEGs in immune cells (18) and 

immune function GWAS prioritized genes (34–36). We assessed enrichment with our ancestry-

associated DEGs using a two-sided, Fisher’s exact test and corrected for multiple testing with 

Benjamini-Hochberg. 

Single-cell specificity and cell-type enrichment analysis 

To understand the cellular context of ancestry-associated DEGs in the human brain, we performed 

cell-type enrichment analysis by leveraging existing gene expression data from 39 broad categories of 

cell types from the mice central and peripheral nervous system (24). Specifically, we examined the 

overlap between DEGs and cell-type-specific genes for each cell type defined in a previous study 

(77). We assessed enrichment for each brain cell type using a two-sided, Fisher’s exact test. We 

corrected for multiple testing with Benjamini-Hochberg.  

We next expanded our cell-type enrichment analysis to single-cell datasets with glial (i.e., astrocyte, 

microglia, and oligodendrocyte) subtype annotation and non-brain immune cells (i.e., peripheral blood 

mononuclear cells [PBMCs]). For glial subpopulations, we downloaded human postmortem 

hippocampus astrocyte, microglia, and oligodendrocyte lineage single-cell data (26) from UCSC cell 

browser (78). For PBMCs, we downloaded human PBMC single-cell data (25) from Zenodo 

(10.5281/zenodo.4273999).  

To calculate cell-type specificity, we adapted cell-type specificity code from 

https://github.com/jbryois/scRNA_disease/blob/master/Code_Paper/Code_Zeisel/get_Zeisel_Lvl4_in

put.md (77) for these additional datasets. Briefly, we converted Seurat objects (79) into 

SingleCellExperiment (80) in R (version 4.3). Next, we aggregated mean counts across annotated cell 

types with scuttle (81). Following aggregation, we removed genes with zero expression and applied 

transcripts per million (TPM) normalization. Across all cell types, we calculated a specificity score 

for each gene defined as the proportion of total expression of a gene. To assign marker genes based on 

cell specificity, we filtered out genes with less than 1 TPM and selected the top 10% of genes based 

on specificity score for each cell type. We used these marker genes to assess enrichment of ancestry-

associated DEGs using a two-sided, Fisher’s exact test and corrected for multiple testing with 

Benjamini-Hochberg. 

For disease single-cell enrichment, we downloaded marker genes and Alzhiemer’s differential 

expression results for each microglial state (40) from http://compbio.mit.edu/microglia_states/. For 
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enrichment analysis, we applied two-sided, Fisher’s exact test using all annotated genes as a universe. 

We corrected for multiple testing with Benjamini-Hochberg. 

Glial cell composition across multiple brain region 

To investigate glial cell composition across the caudate, DLPFC, and hippocampus, we downloaded 

single-cell datasets from multiple brain regions (27) similar to ours (i.e., nucleus accumbens, DLPFC, 

and hippocampus). To integrate three brain regions single-cell data, we modified the across regions 

analysis script from https://github.com/LieberInstitute/10xPilot_snRNAseq-

human/blob/master/10x_across-regions-analyses_step02_MNT.R. Specifically, we cleaned the 

annotated datasets, removing pre-calculated metrics. Following this, we combined the data and 

normalized with multiBatchNorm from batchelor R package (82). Next, we subset the data set 

specifically for annotated glial cells (i.e., microglia, astrocyte, and oligodendrocyte lineage).  

To annotate the glia subpopulation to the multiple brain region dataset, we first converted R objects to 

H5AD files using zellkonverter (https://github.com/theislab/zellkonverter). We integrated the multi-

brain region combined dataset (27) with glia subpopulation dataset (26) using single-cell variational 

inference (scVI; (83)) from scvi-tools (84) per glia subpopulation. Following integration, we 

transferred the glia subpopulation annotations to the multi-brain region dataset with single-cell 

annotation using variational inference (scANVI; (85)) from scvi-tools. We visualized glia 

subpopulation clustering after removing batch effects from the PCA subspace with fastMNN from 

batchelor package and applying tSNE using scater package (81). 

To test glial cell composition differences across brain regions, we applied the propeller function from 

the speckle package in R (version 4.3; (86)) with arcsin transformed counts. The propeller function 

corrected for multiple testing.  

Binary contrast of Black and White Americans 

For internal validation of global ancestry-associated DE features (i.e., gene, transcript, exon, and 

junction), we performed differential expression analysis with a combination of Black and White 

American individuals using mash. Similar to “Global ancestry-associated differential expression 

analysis”, we determined effect size and standard error of effect size using limma-voom modeling. 

Here, we replaced the continuous variable genetic ancestry with the binary, self-reported race. 

Additionally, we selected individuals with limited admixture by including: 1) Black Americans with 

African genetic ancestry greater than or equal to 0.8 and 2) White American with European genetic 

ancestry greater than 0.99. To limit the influence of the larger sample size compared to “Global 

ancestry-associated differential expression analysis”, we randomly sampled ten times without 

replacement to approximately the admixed Black American-only analysis sample size. Following 

extraction of effect sizes and standard errors, we implemented mash modeling for each feature across 

brain regions as described in “Global ancestry-associated differential expression analysis”.  

Immune variation modeling 

To remove the potential effect of immune variation, we added HLA variation (Equation 4) or glial 

cell proportion (astrocytes [Astro], microglia [Micro], macrophage [Macro], oligodendrocytes 

[Oligo], oligodendrocyte progenitor cells [OPC], and T cells [Tcell]; Equation 5) to our DE model as 

covariates. Previously, we found only the oligodendrocytes in the DLPFC showed a significant 

association (Spearman, p-value < 0.05; Fig. S40) with genetic ancestry (see Quality control and 

identification of relevant confounders). Given the potential correlation between HLA variation and 
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global genetic ancestry, we first examined HLA variation association with global genetic ancestry. 

For this, we first generated HLA variation PCs by applying PCA on the 2,850 HLA imputed alleles. 

We found limited correlation between the ten PCs and global genetic ancestry (Spearman, p-value < 

0.05; Fig. S45).  

 

Equation 4 

 

Equation 5 

Weighted correlation network analysis 

We performed a signed-network WGCNA (23) analysis using residualized expression to generate the 

co-expression network with neurotypical control individuals (n=151 Black Americans) in a single 

block by brain region. For this analysis, we filtered genes and outlier individuals with the WGCNA 

function goodSamplesGenes. Following this, we applied additional sample filtering based on sample 

expression with a total Z-normalized distance of 2.5 or greater from other samples. After evaluating 

power and network connectivity for each brain region, we selected a soft power of 12.  

For network construction, we used bicor correlation and the following parameters: 1) mergeCutHeight 

set to 0.3 for the dentate gyrus and default values for the caudate, DLPFC, and hippocampus and 2) 

minModuleSizeset to 30 for the dentate gyrus and default values for the caudate, DLPFC, and 

hippocampus. We set all other parameters to default values. The co-expression network was made 

using Pearson correlation values for the caudate (117 samples; 19,883 genes), dentate gyrus (46 

samples; 18,747 genes), DLPFC (121 samples; 20,070 genes), and hippocampus (128 samples; 19,794 

genes). We determined significant associations with ancestry using a linear model that correlates 

ancestry proportions (see Estimation of genome-wide admixture levels) with module eigengenes.  

For each module, we calculated overlap enrichment/depletion with ancestry-associated DEGs (at FDR 

< 0.05) separated by direction of effect (such as DEGs that are upregulated in AA, upregulated in EA, 

or upregulated in either ancestry) using the two-sided Fisher’s exact test in Python with SciPy (87) 

stats module. The following p-values were corrected using statsmodels (88) stats module with the 

Benjamini-Hochberg method in Python.  

When we examine the most significantly enriched modules for ancestry-associated DEGs upregulated 

in Black American individuals across brain regions, we found the cyan module (enriched for response 

to virus) for the caudate; the pink module (enriched for wound healing and cell migration) for the 

dentate gyrus; the saddlebrown module (enriched for cellular response to virus) for the DLPFC; and 

the yellow module (enriched for cilium movement and assembly) for the hippocampus (Figure S7A 

and Data S4). In contrast, when we examined the most significantly enriched modules for ancestry-
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associated DEGs downregulated in proportion to Black American individuals across brain regions, we 

found the greenyellow module (enriched for inflammatory response) for the caudate; the saddlebrown 

module (enriched for immune response) for the dentate gyrus; the pink module (enriched for immune 

response) for the DLPFC; and the blue module (enriched for immune response) for the hippocampus 

(Figure S7B and Data S4). Although the caudate and DLPFC showed modules enriched for immune 

response for both directions of effect, the most significantly enriched non-gray module (two-sided, 

Fisher’s exact test) was associated with a specific direction of effect consistent with DE analysis for 

the caudate (cyan module, DEGs upregulated in African ancestry) and DLPFC (pink module, DEGs 

downregulated in African ancestry). 

Gene term enrichment analysis 

Differential expression analysis: gene term enrichment and hypergeometric 

We determined significant enrichment for gene sets using the gene set enrichment analysis (GSEA) 

(89, 90), which is less susceptible to gene length bias because it uses permutation enrichment within 

gene sets. In this study, we performed GSEA with gseGO (GO gene set database) from the 

clusterProfiler package (91) and gseDGN (DisGeNET gene set database (22)) from the DOSE 

package (92). We defined the gene set “universe” as all unique genes tested for differential 

expression. When examining isoform-level enrichment (transcript, exon, or junction), we selected, for 

each unique gene, the feature with the largest absolute effect size. For gseGO, minimal gene set size 

(minGSSize) was set to 10, maximum gene set size (maxGSSize) set to 500, and p-value cutoff set to 

0.05. For gseDGN, minGSSize was set to five and p-value cutoff to 0.05. We used the default settings 

for all other parameters.  

For hypergeometric analysis, we used enrichGO and enrichDGN from the clusterProfiler and DOSE 

packages, respectively. Similar to GSEA analysis, we defined the gene set “universe” as all unique 

genes tested for differential expression. 

Co-expression network analysis: gene term enrichment 

For gene term enrichment analysis, we used GOATOOLS Python package (93) using hypergeometric 

tests with the GO database. Similar to “Differential expression analysis: gene term enrichment”, we 

defined the gene set universe as all unique genes tested from differential expression analysis. 

Enrichment of evolutionary constraint 

For evolutionary constraint enrichment analysis, we downloaded genome aggregation database 

(gnomAD; version 2) gene- and transcript-level loss-of-function metrics (29). We assessed 

enrichment with the observed/expected loss-of-function upper bound fraction (LOEUF) using the 

decile bins. Additionally, we tested correlation between ancestry-associated differentially expressed 

features (i.e., genes and transcripts) and the LOEUF with a two-sided Pearson’s correlation. We 

corrected both statistical tests for multiple testing using Benjamini-Hochberg. 

Expression quantitative trait loci analysis 

We performed all cis-eQTL mapping for neurotypical controls (Black American individuals, age > 

17; Table S1) using tensorQTL, which leverages GPUs to substantially increase computational speed 

(94). Initially, we filtered low expression as previously described (12) using the GTEx Python script 
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(i.e., eqtl_prepare_expression.py) with modifications for isoform-level genomic features (i.e., 

transcripts, exons, and junctions). This script retained features with expression estimates greater than 

0.1 TPM in at least 20% of samples and aligned read counts of six or more. Additionally, this script 

used Python functions defined by rnaseqnorm.py to normalize counts with TMM, a Python port of 

edgeR function.  

To generate the TPM files as input for the eqtl_prepare_expression.py, we used effective length 

(Equation 6). For genes and exons, we calculated effective length (Equation 7) using mean insert 

size from Picard tools CollectInsertSizeMetrics (http://broadinstitute.github.io/picard/). For junctions, 

we fixed effective length at 100. After calculating effective length, we dropped any feature with an 

effective length less than or equal to one.  

𝑇𝑃𝑀 =  1𝑒6 ×
𝐶𝑜𝑢𝑛𝑡 / 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

𝛴(𝐶𝑜𝑢𝑛𝑡 / 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑒𝑛𝑔𝑡ℎ)
  Equation 6 

𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 𝑳𝒆𝒏𝒈𝒕𝒉 =  𝑳𝒆𝒏𝒈𝒕𝒉 −  [𝑴𝒆𝒂𝒏 𝑰𝒏𝒔𝒆𝒓𝒕 𝑺𝒊𝒛𝒆] +  𝟏 Equation 7 

Main effect analysis 

For main effect cis-eQTL mapping, we quantified the effects of unobserved confounding variables on 

expression after adjusting for sex, population stratification (SNP PCs 1-5), and k unobserved 

confounding variables on expression. We determined these variables via num.sv function (vfilter set to 

50,000) from sva, an R/Bioconductor package (95), and principal components analysis (PCA) of 

expression for each feature. To identify cis-eQTL, we implemented nominal mapping, adjusting for 

covariates with a mapping window within 0.5 Mb of the TSS of each feature and a minor allele 

frequency ≥ 0.01. The tensorQTL used a two-sided t-test to estimate the nominal p-value for each 

variant-gene pair. To generate a subset of “strong” signals for downstream mash modeling in R, we 

also performed adaptive permutations. Following this, the empirical p-values were corrected for 

multiple testing across features using Storey’s q-value method (96, 97). This resulted in a file with the 

top variant for each feature. In addition to this permutation analysis, we also performed conditional 

analysis. This resulted in additional feature-variant pairs to generate our set of “strong” associations 

for mash modeling. 

Ancestry-dependent interaction analysis 

For genetic ancestry-dependent cis-eQTL mapping, we used the confounders generated from main 

effect analysis but removed variables associated with population stratification (SNP PCs 1-5). To 

identify genetic ancestry-dependent cis-eQTL, we implemented nominal mapping, adjusting for 

covariates with a mapping window within 0.5 Mb of the TSS of each feature and a MAF greater than 

or equal to 0.05. To generate a subset of strong signals for downstream mash modeling, we performed 

eigenMT (98) by setting run_eigenmt to True. This resulted in a file with the top variant for each 

feature. 

Integration with mash modeling in R 

To assess sharing across brain regions and to increase our power to detect main and interacting eQTL 

effects within admixed Black American only individuals, we used the multivariate adaptive shrinkage 

framework as previously described (12). We extracted effect sizes and standard errors for these effect 

sizes from the nominal results for either main or interacting cis-eQTL. To specify a correlation 

structure across brain regions (i.e., overlapping sample donors), we used the 

http://broadinstitute.github.io/picard/
https://sciwheel.com/work/citation?ids=673951&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=673951&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=673951&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=49051,11523002&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=49051,11523002&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=49051,11523002&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=49051,11523002&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=49051,11523002&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4121044&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4121044&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4121044&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0


estimate_null_correlation_simple function prior to fitting the mash model. The mash model included 

both the canonical covariance matrices and the data-driven covariance matrices learned from our data.  

We defined the data-driven covariance matrices as the top four PCs from the PCA performed on the 

“strong” signals. For gene level analysis, we defined a set of “strong” tests running a simple 

condition-by-condition (mash_1by1) analysis as described in “Differential expression analysis”. For 

isoform-level analysis (i.e., transcript, exon, and junction), we defined a set of “strong” tests using 

either the results from permutation or eigenMT analyses. Specifically, for main effect analysis, the set 

of “strong” tests were selected if a feature-variant pair was present in at least one brain region within 

permutation or conditional analyses. For interaction analysis, we selected the set of “strong” tests if a 

feature-variant pair was present in at least one brain region from the eigenMT top associations. 

To learn the mixture weights and scaling for the main and interacting effects, we initially fit the mash 

model with a random set (i.e., unbiased representation of the results) of the nominal eQTL results 

(i.e., 5% for gene-variant pairs and 1% for transcript-, exon-, and junction-variant pairs). We next 

fitted these mixture weights and scaling to all of the main and interacting eQTL results in chunks. 

Following model fitting, we extracted posterior summaries and measures of significance (i.e., lfsr). 

We considered main and interacting eQTL significant if the lfsr was less than 0.05. 

Absolute allele frequency difference 

To calculate absolute allele frequency differences, we first calculated allele frequency within the 1000 

Genome Project AFR (super population) and EUR (super population) reference genome using PLINK 

per chromosome. Prior to allele frequency calculation, we filtered SNPs based on a MAF of 0.01 for 

AFR and 0.005 for EUR. To calculate differences between the two super populations, we matched 

SNP and reference allele before calculating absolute frequency differences (Equation 8). We assessed 

absolute allele frequency differences for ancestry-associated DEGs compared with other eGenes using 

two methods: 1) top SNP per gene and 2) average SNPs across the gene. 

    Equation 8 

Genetic control of ancestry effects on expression 

We estimated the predicted cis-genetic population differences in expression by first computing 

predicted expression from genotype dosage (0, 1, or 2; see below). With these predicted expression 

values, we performed differential expression for genetic ancestry using a model analogous to 

Equation 1 (see Global ancestry-associated differential expression analysis) to obtain predicted 

genetic ancestry effects. We extracted the observed population differences in expression from the 

effect sizes estimated after applying mash as described in “Ancestry-associated differential expression 

analysis”. 

Expression residualization for prediction models 

To generate residualized expression for our prediction models, we fit a linear model with lmFit from 

limma to normalized expression (see Expression quantitative trait loci analysis) and covariates (see 

Differential expression analysis; Equation 3). Using this model, we regressed out covariates from 

normalized expression using the residuals function in R (version 4.0.3). 



Calculating predicted expression using genetic variants in a linear model 

For our linear model, we extracted the posterior effect size of the top genetic variant from the mash 

model for each feature (gene, transcript, exon, and junction). We imputed residualized expression 

using an individual’s genotype dosage (j) and feature (i) posterior effect size (Equation 9) using 

PyTorch (99). 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖,𝑗  =  𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 (𝑒𝑄𝑇𝐿)𝑖  ∗  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗  Equation 9 

Calculating predicted expression using genetic variants in an elastic net model 

We selected all genetic variants within ± 500kb of the gene body. We removed variants with missing 

genotypes and filtered variants based on a MAF threshold of 0.01 and a Hardy-Weinberg equilibrium 

below a p-value of 1e-5. We used an elastic net model, ideal for relatively smaller sample sizes. For 

our elastic net model, we fitted a sparse linear regression model using big_spLinReg from the bigstatsr 

R package (v1.5.12; (100)). We tuned the alpha parameter using a sequence of 20 alphas (i.e., 0.05 to 

1 using 0.05 step size). Additionally, we used four sets for the “Cross-Model Selection and 

Averaging” procedure. We averaged feature weights for genetic variants across k-folds (five folds for 

each of the caudate, DLPFC, and hippocampus; and three folds for dentate gyrus). We imputed 

residualized expression with these feature weights (i) and an individual’s genotype dosage (j) 

(Equation 10). We calculated the correlation coefficient (r) using Pearson's correlation on the test 

samples for each k-fold. 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖,𝑗  =  𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑖  ∗  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑗  Equation 10 

Linkage disequilibrium score regression 

We performed stratified LD score regression (S-LDSC) (33) to evaluate global ancestry-associated 

DEGs for their enrichment for heritability of complex traits, mainly focused on 17 brain and five 

immune-related traits as a positive control. We downloaded GWAS summary statistics of each trait 

from the sources listed in Data S14. Following recommendations from the LDSC resource website 

(https://alkesgroup.broadinstitute.org/LDSCORE/), we ran S-LDSC for each list of candidate genes. 

We used the baseline LD model (version 2.2) that included 97 annotations to control for the LD 

between variants with other functional annotations in the genome. To remove other potential 

confounding factors in our analysis,we also included one annotation of all protein-coding genes.  

To capture the regulatory regions of each gene, we defined gene intervals as a region spanning 500 kb 

upstream of the gene's start position and 50 kb downstream of its end position. We used HapMap 

Project Phase 3 SNPs as regression SNPs and 1000 Genomes SNPs of European ancestry samples as 

reference SNPs. We downloaded all SNPs from the LDSC resource website. 

We ran S-LDSC for all ancestry-associated DEGs and conducted separate runs for DEGs of protein-

coding and non-coding genes. For cell type-specific enrichment, we used glia subpopulation 

specificity markers generated in “Single-cell specificity and cell-type enrichment analysis”.  
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Differential methylation and environmental control of genetic ancestry 

Variably methylated region analysis 

To identify environmental-driven VMRs, we used only our admixed Black American neurotypical 

individuals (caudate [n=89], DLPFC [n=69], and hippocampus [n=69]). We considered approximately 

24 million CpGs that had sequencing coverage of > 5 reads in > 80% samples of each brain region. 

We also excluded CpGs within ENCODE “blacklist” regions from analysis. We selected the top one 

million variable CpGs to compute principal components (PC) based on smoothed DNAm levels while 

removing the variation due to global ancestry of our primary variable of interest. Specifically, we 

regressed out global ancestry from each variable CpG and the residual DNAm was used for PC 

analysis. To capture CpGs whose variation of DNAm level was potentially driven by unknown 

environmental factors, we computed standard deviation for residualized DNAm levels of each CpG 

after regressing out top five PCs to remove variations due to batch effects and biological factors. We 

then selected the top 1% variable CpGs for calling VMRs for each brain region using the 

regionFinder3 function of bsseq and VMRs, retaining VMRs with more than five CpGs for further 

analysis. We estimated the DNAm level of each VMR by the total number of reads supporting 

methylated cytosine divided by the total number of reads supporting either methylated or 

unmethylated cytosine in the region. 

Differentially methylated region analysis 

For differentially methylated region analysis, we applied a linear model on VMRs (see Variably 

methylated region analysis) as a function of: 1) global genetic ancestry, 2) local genetic ancestry, 3) 

sex, 4) age, and 5) top five principal components of DNAm derived from top one million variable 

CpGs. We corrected both statistical tests for multiple testing using Benjamini-Hochberg. 

Functional enrichment analysis 

We associate biological functions to global ancestry-associated DMRs using rGREAT (version 2.0.2) 

(101), an R/bioconductor package. Specifically, we selected significant DMRs (FDR < 0.05) and 

converted them into genomic ranges format with the plyranges (version 1.18.0) (102), an 

R/Bioconductor package. Following this conversion and filtering, we applied the great function from 

rGREAT with the MSigDB Canonical Pathway C5 (90) gene ontology database with background set 

to human genome (hg18) autosomal chromosomes. We extracted enrichment results using the 

getEnrichmentTable function and plotted region-gene associations with plotRegionGeneAssociation 

function from the rGREAT package. 

Evaluating environmental impact of global ancestry-associated DEGs 

To evaluate the impact of unknown environmental factors on global ancestry-associated DEGs, we 

first annotated the VMRs using annotate_regions and basic genes hg38 annotation from the 

R/Bioconduction package annotatr (version 1.24.0) (103) after converting to genomic ranges with 

plyranges. Following annotation, we estimated PST
  (18). PST is essentially the partial coefficient of 

determination. As such, we estimated the PST statistic for each gene with Equation 11. We calculated 

the PST statistics for ancestry before and after including the residualized VMRs annotated to an 

ancestry-associated DEG. The residual was derived from raw DNAm levels of each VMR by 

regressing out known biological factors (local ancestry, age, sex), as well as potential batch effects 

and other unknown biological factors captured by the top five principal components of DNAm levels. 
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Following this, we calculated ΔPST to extract the fraction of change associated with the environment 

(Equation 12).  

 

Equation 11 

  

Equation 12 

Graphics 

We used R to generate all plots. We generated UpSet plots using ComplexHeatmap (version 2.10.0; 

(104)). To generate Circos plots, we used circlize (version 0.4.15; (105)). We generated enrichment 

heatmaps, gene term enrichment, error plots, box plots, distribution plots, and scatterplots using a 

combination of ggplot2 (version 3.3.6; (106)) and ggpubr (version 0.4.15; (107)). For pairwise 

comparison plots, we used corrplot (version 0.92; (108)). We generated meta plots using the mashr 

function mash_plot_meta. We generated venn diagrams with ggvenn. 

Code availability 

All code and Jupyter Notebooks are available through GitHub at 

https://github.com/LieberInstitute/aanri_phase1 with more detail (55).   
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Supplementary Figures 

 

Fig. S1: Genetic ancestry estimates for Black and White American neurotypical individuals. 

Histogram showing estimated African and European ancestry for each unique neurotypical individual 

across the caudate, dentate gyrus, DLPFC, and hippocampus. 

  



 

Fig. S2: Extensive global ancestry-associated differential expression across brain regions and 

features (i.e., gene, transcript, exon, and junction). Volcano plot of effect size (log2 of fold change) 

estimated from mash modeling and significance (-log10 of lfsr) with features associated with increased 

AA (blue) or EA (orange) proportions. 

  



 

Fig. S3: Significant correlation between global and local ancestry shared features with local 

ancestry showing smaller effect sizes. Correlation (two-sided, Spearman) of local ancestry-

associated DE features (i.e., gene, transcript, exon, and junction) effect sizes (y-axis) versus global 

ancestry-associated DE features effect sizes (x-axis) across brain regions. A fitted trend line is 

presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in light 

gray. 

  



 

Fig. S4: Significant enrichment of immune-related pathways for ancestry-associated DEGs. GO 

enrichment (hypergeometric, q-value < 0.05) of all global (left) and local (right) ancestry-associated 

DEGs across brain regions, highlighting terms associated with immune response.  



 

Fig. S5: Immune-related pathways show consistent direction of effect expression across brain 

regions. A. Heatmap showing direction of effect (increase AA proportion [blue] or increased EA 

proportion [red]) associated with immune-related GO terms across brain regions. Significant 

enrichments (GSEA, q-values < 0.05; -log10 transformed) annotated within tiles. B. Metaplot showing 

examples of immune-related genes associated with significantly enriched pathways (GSEA 

enrichment analysis) across brain regions. 

  



 

Fig. S6: Local ancestry expression show similar pattern of direction of effect in immune-related 

pathways across brain regions as global ancestry. Heatmap showing direction of effect (increase 

AA proportion [blue] or increased EA proportion [red]) associated with immune-related GO terms 

across brain regions. Enrichment trends (GSEA, q-values < 0.25; -log10 transformed) annotated within 

tiles.  



 

Fig. S7: Significant enrichment of ancestry-associated DEGs with population differences in 

immune responses. Heatmaps showing significant enrichment (red; two-sided, Fisher’s exact test 

with p-values corrected for multiple testing with Benjamini-Hochberg) of ancestry-associated DEGs 

(adjusted p-value < 0.05) and population differences in primary macrophages (18) separated by 

infection status and direction of effect. Significant enrichments (two-sided, Fisher’s exact test with 

FDR corrected p-values -log10 transformed) annotated within tiles. 
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Fig. S8: Extensive enrichment of gene co-expression modules with ancestry-associated DEGs in 

admixed Black American individuals across brain regions. Heatmap of enrichment analysis (two-

sided, Fisher’s exact test with p-values corrected for multiple testing with Benjamini-Hochberg) 

showing significant enrichment (red) and depletion (blue) across WGCNA modules for ancestry-

associated DEGs (adjusted p-value < 0.05) separated by direction of effect. Significant enrichments 

(two-sided, Fisher’s exact test with FDR corrected p-values -log10 transformed) annotated within tiles.  



  

Fig. S9: Functional enrichment of gene co-expression network modules and ancestry-associated 

DEGs in admixed Black American across brain regions. Top 15 enriched GO terms for most 

significantly enriched WGCNA module for ancestry-associated DEGs that show A. upregulation with 

increasing AA proportion or B. upregulation with increasing EA proportion. 



 

Fig. S10: Global ancestry-associated DEGs show significant enrichment of immune-related cell 

types (i.e., microglia and macrophages). Heatmap showing enrichment analysis (two-sided, Fisher’s 

exact test with p-values corrected for multiple testing with Benjamini-Hochberg) of significantly 

enriched (red) or depleted (blue) across brain cell types (24) for ancestry-associated DEGs (adjusted 

p-value < 0.05) separated by direction of effect. Significant enrichments (two-sided, Fisher’s exact 

test with FDR corrected p-values -log10 transformed) annotated within tiles. 
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Fig. S11: Enrichment of non-brain immune cell types for local but not global ancestry DEGs. 

Heatmap showing enrichment analysis (two-sided, Fisher’s exact test with p-values corrected for 

multiple testing with Benjamini-Hochberg) of significantly enriched (red) or depleted (blue) across 

peripheral blood mononuclear cells (PBMCs) cell types (25) for ancestry-associated DEGs (adjusted 

p-value < 0.05) separated by direction of effect. Significant enrichments (two-sided, Fisher’s exact 

test with FDR corrected p-values -log10 transformed) annotated within tiles.  
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Fig. S12: Distinct, but not specific enrichment of global ancestry-associated DEGs for glial cells. 

Heatmap showing enrichment analysis (two-sided, Fisher’s exact test with p-values corrected for 

multiple testing with Benjamini-Hochberg) of significantly enriched (red) or depleted (blue) across 

brain immune cell subtypes (26) for ancestry-associated DEGs (adjusted p-value < 0.05) separated by 

direction of effect. Significant enrichments (two-sided, Fisher’s exact test with FDR corrected p-

values -log10 transformed) annotated within tiles.  
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Fig. S13: Local ancestry-associated DEGs show significant enrichment of immune-related cell 

types (i.e., microglia and macrophages). Heatmap showing enrichment analysis (two-sided, Fisher’s 

exact test with p-values corrected for multiple testing with Benjamini-Hochberg) of significantly 

enriched (red) or depleted (blue) across brain cell types (24) for ancestry-associated DEGs (adjusted 

p-value < 0.05) separated by direction of effect. Significant enrichments (two-sided, Fisher’s exact 

test with FDR corrected p-values -log10 transformed) annotated within tiles.  
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Fig. S14: The majority of glial cell composition is not significantly different across brain 

regions. t-SNE and cell proportion box plots (two-way, ANOVA) of single-cell data from the DLPFC 

(n=3), hippocampus (HPC; n=3), and nucleus accumbens (NAc; n=8) (27) after annotating for A. 

microglia subpopulations, B. astrocyte subpopulation, and C. oligodendrocyte lineage (26).Box plots 

show the median and first and third quartiles, and whiskers extend to 1.5× the interquartile range.  Y-

axis is arcsine transformed counts.  
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Fig. S15: Global ancestry-associated DEGs are significantly enriched for HLA class II genes. 

Heatmap showing enrichment analysis (two-sided, Fisher’s exact test with p-values corrected for 

multiple testing with Benjamini-Hochberg) of significantly enriched (red) or depleted (blue) across 

extended MHC region for ancestry-associated DEGs (adjusted p-value < 0.05) separated by direction 

of effect. A. Subregions of the extended MHC region. B. Gene clusters of the extended MHC region. 

Significant enrichments (two-sided, Fisher’s exact test with FDR corrected p-values -log10 

transformed) annotated within tiles.  



 

Fig. S16: Local ancestry-associated DEGs are significantly enriched for HLA class II genes. 

Heatmap showing enrichment analysis (two-sided, Fisher’s exact test with p-values corrected for 

multiple testing with Benjamini-Hochberg) of significantly enriched (red) or depleted (blue) across 

extended MHC region for ancestry-associated DEGs (adjusted p-value < 0.05) separated by direction 

of effect. A. Subregions of the extended MHC region. B. Gene clusters of the extended MHC region. 

Significant enrichments (two-sided, Fisher’s exact test with FDR corrected p-values -log10 

transformed) annotated within tiles.  



 

Fig. S17: HLA genes do not drive enrichment for immune-related pathways of global ancestry-

associated DEGs. GSEA and GO enrichment of DEG without HLA genes across brain regions. 

GSEA analysis highlighting terms associated with increased AA (African ancestry) or EA (European 

ancestry) proportions. GO enrichment including all DEGs. 

  



 

Fig. S18: MHC region does not drive enrichment for immune-related pathways of global 

ancestry-associated DEGs. GSEA and GO enrichment of DEG without MHC region across brain 

regions. GSEA analysis highlighting terms associated with increased AA (African ancestry) or EA 

(European ancestry) proportions. GO enrichment including all DEGs. 

  



 

Fig. S19: Extended MHC region does not drive enrichment for immune-related pathways of 

global ancestry-associated DEGs. GSEA and GO enrichment of DEG without extended MHC 

region across brain regions. GSEA analysis highlighting terms associated with increased AA (African 

ancestry) or EA (European ancestry) proportions. GO enrichment including all DEGs.  



 

Fig. S20: Similar to global ancestry, extended MHC region does not drive enrichment for 

immune-related pathways of local ancestry-associated DEGs. GO enrichment of DEG without 

extended MHC region across brain regions. GO enrichment including all DEGs.  



 

Fig. S21: Immune variation contributes only minimally to transcriptional changes of ancestry-

associated DEGs. Scatter plot of global ancestry-associated DEGs comparing effect sizes from 

general model (x-axis) and model with covariates (y-axis) associated with A. HLA variation or B. 

glial cell proportion. A fitted trend line is presented in blue as the mean values +/- standard deviation. 

The standard deviation is shaded in light gray.  



 

Fig. S22: Ancestry-dependent eQTL examples showing shared direction of effect across brain 

regions. Box plot of the most significant variant per eGene showing ancestry-dependent eQTL using 

combined (Black [red] and White [blue] Americans). Box plots show the median and first and third 

quartiles, and whiskers extend to 1.5× the interquartile range. 

  



 

Fig. S23: Ancestry-dependent eQTL shared across brain regions and enriched for main effect 

eQTL. A. UpSet plot showing sharing of eGenes across brain regions. B. Heatmap showing 

significant sign matched. C. Enrichment heatmap of ancestry-dependent eGenes with ancestry-

associated DEGs; significant enrichments (two-sided, Fisher’s exact test with FDR corrected p-values 

-log10 transformed) annotated within tiles.   



 

Fig. S24: Significant increase of absolute allele frequency difference for ancestry-associated 

DEGs compared with non-DEGs. Density plot showing significant increase in absolute allele 

frequency differences (AFD; one-sided, Mann-Whitney U, p-value < 0.05) for global ancestry-

associated DEGs (red) compared with non-DEGs (blue) across brain regions. A dashed line marks the 

mean absolute AFD. Absolute AFD calculated from the most significant SNP per gene. 

  



 

Fig. S25: Summary of test R2 for elastic net model separated by genes with an eQTL and those 

without. Error bars correspond to 95% confidence intervals. eGene are unique genes associated with 

an eQTL. DEGs are global ancestry-associated differential expressed genes.  



 

Fig. S26: Elastic net model captures more genetic contribution of genetic ancestry-associated 

expression changes in the brain on the isoform level. Correlation (two-sided, Spearman) of elastic 

net predicted (y-axis) versus observed (x-axis) global ancestry-associated differences in expression 

among ancestry-associated DE features (i.e., transcript, exon, and junction) with an eQTL across brain 

regions. A fitted trend line is presented in blue as the mean values +/- standard deviation. The 

standard deviation is shaded in light gray. 



 

Fig. S27: The most significant eQTL explains roughly 20% of genetic ancestry expression 

differences in the brain. Correlation (two-sided, Spearman) of cis-predicted (y-axis) versus observed 

(x-axis) global ancestry-associated differences in expression among ancestry-associated DE features 

(i.e., gene, transcript, exon, and junction) with an eQTL across brain regions. A fitted trend line is 

presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in light 

gray. 

  



 

 

Fig. S28: Extensive ancestry-associated expression changes across the brain highlighting impact 

of environment. A. Circos plot showing ancestry DEGs from binary internal replication analysis 

across the caudate (red), dentate gyrus (blue), DLPFC (green), and hippocampus (purple). B. Gene set 

enrichment analysis of differential expression analysis across brain regions, highlighting terms 

associated with increased AA (African ancestry) or EA (European ancestry) proportions. 

  



 

Fig. S29: Black versus White American binary analysis potentially confounded by 

environmental factors. Venn diagram showing the overlap of global ancestry-associated DE features 

(i.e., gene, transcript, exon, and junction) between within Black and other (Black v. White Americans) 

DE analysis across brain regions.   



 

Fig. S30: Significant correlation of effect sizes between genetic ancestry association in admixed 

Black American individuals and self-reported race between Black and White Americans. Scatter 

plot showing significant correlation (two-sided, Spearman correlation) between Black American-only 

analysis (x-axis) and combined analysis (Black and White Americans; y-axis) for each brain region 

and feature (i.e., gene, transcript, exon, and junction). A fitted trend line is presented in blue as the 

mean values +/- standard deviation. The standard deviation is shaded in light gray.  



 

Fig. S31: Increased correlation of effect sizes for shared features between genetic ancestry 

association in admixed Black American individuals and self-reported race between Black and 

White Americans. Scatter plot showing significant correlation (two-sided, Spearman correlation) 

between Black American-only analysis (x-axis) and combined analysis (Black and White Americans; 

y-axis) for each brain region and feature (i.e., gene, transcript, exon, and junction). A fitted trend line 

is presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in 

light gray.  



 

Fig. S32: Local ancestry is more variable than global ancestry. Example scatter plots showing 

local (red) and global (blue) ancestry associated with DNAm across brain regions. DMR test results 

(effect size [beta], standard error [se], and variance [var]) annotated on top of each example VMR. 

  



 

Fig. S33: Significant correlation of DNAm levels between local and global ancestry-associated 

DMRs across brain regions. Scatter plot comparing global (x-axis) and local (y-axis) for A. all 

ancestry-associated DMRs and B. significant ancestry-associated DMRs (FDR < 0.05). A fitted trend 

line is presented in blue as the mean values +/- standard deviation. The standard deviation is shaded in 

light gray.  



 

Fig. S34: Global ancestry-associated DEGs show general enrichment for heritability of 

neurological and immune-related traits. Heatmap for ancestry-associated DEGs that show no 

enrichment (red) nor depletion (blue) for heritability of brain- and immune-related traits from S-

LDSC analysis. Numbers within tiles are levels of enrichment (> 1) or depletion (< 1) that are 

significant after multiple testing correction (FDR < 0.05). The left panel shows results for all DEG in 

each brain region. The middle and right panels show results for DEG increased with AA or EA 

proportions for each brain region, respectively.  



 

Fig. S35: Limited enrichment of non-brain immune function GWAS prioritized genes with 

global ancestry-associated DEGs. Heatmap showing enrichment analysis (two-sided, Fisher’s exact 

test with p-values corrected for multiple testing with Benjamini-Hochberg) of significantly enriched 

(red) or depleted (blue) immune function GWAS prioritized genes for ancestry-associated DEGs (lfsr 

< 0.05) separated by direction of effect. Significant enrichments (-log10 transformed) annotated 

within tiles.  



 

Fig. S36: Ancestry-associated glial cell subpopulations show general enrichment for heritability 

of Alzheimer’s and Parkinson’s diseases. Heatmap for glial cell subpopulations that show 

enrichment (red) for heritability of Alzheimer’s and Parkinson’s diseases from S-LDSC analysis. 

Numbers within tiles are levels of enrichment (> 1) or depletion (< 1) that are significant after 

multiple testing correction (FDR < 0.01).  



 

Fig. S37: Significant enrichment of ancestry-associated DEGs for activated microglia and 

disease-associated microglia. A. Heatmap showing enrichment analysis (two-sided, Fisher’s exact 

test) of significantly enriched (red) or depleted (blue) microglia states (40) for ancestry-associated 

DEGs (lfsr < 0.05) separated by direction of effect. Significant enrichments (-log10 transformed) 

annotated within tiles. B. Annotation of microglia states (40) for Alzheimer’s disease (AD): 

significant cell proportion differences, disease-associated microglia [DAM] signature in mouse 

models, and genetic association via MAGMA enrichment. Depletion is annotated in blue and 

enrichment in red.  

https://sciwheel.com/work/citation?ids=15423239&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15423239&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15423239&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15423239&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15423239&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15423239&pre=&suf=&sa=0


 

Fig. S38: Ancestry-associated DEGs are primarily enriched for microglial states associated with 

late-response Alzheimer’s disease-related DEGs. Heatmap showing enrichment analysis (two-

sided, Fisher’s exact test) of ancestry DEGs (lfsr < 0.05) with cell type-specific Alzheimer's disease 

(AD) DEGs (40) separated response stage for ancestry-associated DEGs (lfsr < 0.05) separated by 

direction of effect. Early response is Alzheimer’s DEGs detected between neurotypical control and 

early Alzhiemer’s individual. Late response is Alzheimer’s DEGs detected between early and late 

Alzheimer’s individuals. Alzheimer’s stage defined in (40). Significantly enriched (red) or depleted 

(blue) tiles are annotated with -log10(FDR).  
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Fig. S39: Limited correlation between covariates across brain regions. Heatmap showing 

correlation between covariates across brain regions (linear regression, Bonferroni corrected p-values). 

Significant correlations (-log10 transformed) are denoted in each tile.  

  



 

Fig. S40: Cell-type proportions show no correlation with genetic ancestry in Black American 

donors across brain regions. Scatter plot showing no correlation (two-sided, Spearman) between 

genetic ancestry and cell-type proportion across the brain. A fitted trend line is presented in blue as 

the mean values +/- standard deviation. The standard deviation is shaded in light gray. Astro: 

astrocytes. Endo: endothelial. Micro: microglia. Macro: macrophage. Mural: mural cells. Oligo: 

oligodendrocytes. OPC: oligodendrocyte progenitor cells. Tcell: T cells. Excit: excitatory neurons. 

Inhib: inhibitory neurons.  



 

Fig. S41: Significant correlation of several cell-type proportions with genetic ancestry in Black 

American and White American donors across brain regions. Scatter plot showing correlation 

(two-sided, Spearman) between genetic ancestry and cell-type proportion across the brain. A fitted 

trend line is presented in blue as the mean values +/- standard deviation. The standard deviation is 

shaded in light gray. Astro: astrocytes. Endo: endothelial. Micro: microglia. Macro: macrophage. 

Mural: mural cells. Oligo: oligodendrocytes. OPC: oligodendrocyte progenitor cells. Tcell: T cells. 

Excit: excitatory neurons. Inhib: inhibitory neurons.  



 

Fig. S42: Significant correlation between cell-type proportion and model covariations. Heatmap 

of correlation between covariates and cell-type proportion across the brain (linear regression, 

Bonferroni corrected p-values). Significant correlations (-log10 transformed) are denoted in each tile. 

Astro: astrocytes. Endo: endothelial. Micro: microglia. Macro: macrophage. Mural: mural cells. 

Oligo: oligodendrocytes. OPC: oligodendrocyte progenitor cells. Tcell: T cells. Excit: excitatory 

neurons. Inhib: inhibitory neurons. 

  



 

Fig. S43: Cell-type proportion partially corrected for by covariates. Heatmap of correlation 

between PCA of gene expression and cell-type proportions before (normalized) and after 

(residualized) adjusting for covariates including qSVs across brain regions (linear regression, 

Bonferroni corrected p-values). Significant correlations (-log10 transformed) are denoted in each tile. 

Astro: astrocytes. Endo: endothelial. Micro: microglia. Macro: macrophage. Mural: mural cells. 

Oligo: oligodendrocytes. OPC: oligodendrocyte progenitor cells. Tcell: T cells. Excit: excitatory 

neurons. Inhib: inhibitory neurons. 

  



 

Fig. S44: Significant overlap of global ancestry-associated DE features with local ancestry 

analysis. Venn diagram showing the overlap between local ancestry-associated DE features (i.e., 

gene, transcript, exon, and junction) and global ancestry-associated DE features across brain regions. 

Significant overlap tested with two-sided, Fisher’s exact test (FDR < 0.05). 

  



 

Fig. S45: Little to no correlation between HLA variation PCs and global genetic ancestry. 

Scatter plot showing correlation (two-sided, Spearman) between genetic ancestry and HLA variation 

PCs. A fitted trend line is presented in blue as the mean values +/- standard deviation. The standard 

deviation is shaded in light gray.  



Supplementary Tables 

Table S1: Black American sample characteristics for adult (age > 17) neurotypical control postmortem 

caudate, dentate gyrus, DLPFC, and hippocampus (10–12). Abbreviations: RNA integrity number (RIN). 
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Table S2. Summary of global ancestry-associated differential expression results (lfsr < 0.05) by feature 

(gene, transcript, exon, and exon-exon junction) for ancestry differences within admixed AA (n=151) in 

the caudate (n=122), dentate gyrus (n=47), DLPFC (n=123), and hippocampus (n=133). The number of 

unique genes associated with transcript, exon, or junction is in parentheses. 

Brain Region Gene Transcript (Geneid) Exon (Geneid) Junction (Geneid) 

Caudate 1,273 1,949 (1,728) 5,264 (2,991) 1,621 (1,116) 

Dentate Gyrus 997 3,153 (2,701) 4,630 (2,737) 1,527 (1,105) 

DLPFC 1,075 2,462 (2,126) 5,552 (3,140) 1,625 (1,138) 

Hippocampus 1,025 2,643 (2,263) 4,571 (2,717) 1,681 (1,177) 

 

  



Table S3. Summary of local ancestry-associated differential expression results (lfsr < 0.05) by feature 

(gene, transcript, exon, and exon-exon junction) for ancestry differences within admixed AA (n=149) in 

the caudate (n=120), dentate gyrus (n=45), DLPFC (n=121), and hippocampus (n=131). The number of 

unique genes associated with transcript, exon, or junction is in parentheses. 

Brain Region Gene Transcript (Geneid) Exon (Geneid) Junction (Geneid) 

Caudate 6,657 7,854 (5,746) 108,709 (12,287) 49,464 (8,385) 

Dentate Gyrus 4,154 5,857 (4,613) 67,239 (10,974) 35,216 (7,918) 

DLPFC 6,148 7,541 (5,561) 99,351 (12,051) 45,981 (8,282) 

Hippocampus 7,006 8,305 (5,996) 114,652 (12,411) 53,727 (8,510) 

 

  



Table S4: Summary of main effect cis-eQTL (lfsr < 0.05) in Black American admixed 

individuals (n=148) by feature (gene, transcript, exon, and exon-exon junction) across the 

caudate (n=120), dentate gyrus (n=45), DLPFC (n=121), and hippocampus (n=131). eFeature: 

unique feature. eGene: unique gene ID. 

 Caudate Dentate Gyrus DLPFC Hippocampus 

Gene eQTL 698,047  605,755 728,533 688,628 

eFeature 10,867 11,664 11,173 10,408 

eGene 10,867 11,664 11,173 10,408 

Transcript eQTL 934,240 1,062,967 968,814 940,405 

eFeature 17,759 32,342 18,422 17,581 

eGene 10,369 14,674 10,710 10,320 

Exon eQTL 1,503,349 1,532,590 1,551,027 1,461,400 

eFeature 29,203 37,894 30,091 27,560 

eGene 10,423 12,675 10,612 9,927 

Junction eQTL 502,183 601,181 496,775 480,246 

eFeature 11,135 25,694 10,831 10,165 

eGene 3,084 4,768 3,022 2,874 

  



Table S5: Summary of ancestry-dependent cis-eQTL (lfsr < 0.05) in Black American admixed 

individuals (n=148) by feature (gene, transcript, exon, and exon-exon junction) across the 

caudate (n=120), dentate gyrus (n=45), DLPFC (n=121), and hippocampus (n=131). eFeature: 

unique feature. eGene: unique gene ID. 

 Caudate Dentate Gyrus DLPFC Hippocampus 

Gene eQTL 3,281 5,484 3,441 3,371 

eFeature 531 942 573 531 

eGene 531 942 573 531 

Transcript eQTL 3,849 28,102 3,853 4,315 

eFeature 617 4,443 619 716 

eGene 580 3,529 582 671 

Exon eQTL 2,353 4,346 2,189 2,196 

eFeature 510 773 483 483 

eGene 330 481 314 312 

Junction eQTL 2,452 61,494 2,609 3,111 

eFeature 436 8,427 508 613 

eGene 275 4,748 332 419 

  



Table S6. Black and White Americans sample breakdown for adult (age > 17) neurotypical control 

postmortem caudate, dentate gyrus, DLPFC, and hippocampus (10–12). Abbreviations: Female (F), Male 

(M), Black American (BA), White American (WA), and RNA integrity number (RIN). 
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Table S7. Summary of differential expression results (lfsr < 0.05) by feature (gene, transcript, 

exon, and exon-exon junction) for ancestry differences in the caudate (n=240), dentate gyrus (n 

= 90), DLPFC (n=212), and hippocampus (n=243). The number of unique genes associated with 

transcript, exon, or junction is in parentheses. 

Brain Region Gene 
Transcript 

(Geneid) 
Exon (Geneid) Junction (Geneid) 

caudate 4,238 7,752 (5,451) 30,858 (9,303) 9,426 (4,181) 

Dentate Gyrus 3,395 9,758 (6,543) 23,407 (8,145) 7,770 (3,848) 

DLPFC 4,226 9,396 (6,288) 31,834 (9,524) 9,467 (4,231) 

Hippocampus 4,025 9,456 (6,370) 29,340 (9,095) 9,034 (4,071) 

  



Supplementary Data 

1. Data S1. BrainSeq_ancestry_4features_4regions_allFeatures.txt.gz: Compressed text file of 

differential expression analysis after mash modeling for global genetic ancestry (continuous) across the 

caudate, dentate gyrus, DLPFC, and hippocampus for four features (gene, transcript, exon, and 

junction). 

2. Data S2. BrainSeq_ancestry_local_4features_4regions_allFeatures.txt.gz: Compressed text file of 

differential expression analysis after mash modeling for local genetic ancestry (continuous by feature) 

across the caudate, dentate gyrus, DLPFC, and hippocampus for four features (gene, transcript, exon, 

and junction). 

3. Data S3. DE_functional_enrichment_ancestry_AAonly.xlsx: Excel file of GO-term enrichment and 

gene set enrichment analysis (GSEA) for genetic ancestry (continuous) differentially expressed genes 

across the caudate, dentate gyrus, DLPFC, and hippocampus. 

4. Data S4. WGCNA_functional_enrichment_analysis_ancestry_AAonly.xlsx: Excel file of GO-term 

enrichment for genetic ancestry-associated WGCNA modules across brain regions. 

5. Data S5. WGCNA_DEG_enrichment_modules_GO_analysis.tar.gz: Compressed directory of 

ancestry-associated DEGs enriched for WGCNA module functional enrichment results (i.e., GO-term 

enrichment) for the caudate, dentate gyrus, DLPFC, and hippocampus. 

6. Data S6. BrainSeq_main_eQTL_4features_4regions_significant.txt.gz: Compressed text file of 

main effect eQTL results (lfsr < 0.05), variant-feature pairs across the caudate, dentate gyrus, DLPFC, 

and hippocampus for four features (gene, transcript, exon, and junction). 

7. Data S7. BrainSeq_ancestry_dependent_eQTL_4features_4regions_significant.txt.gz: 

Compressed text file of genetic ancestry-dependent eQTL results (lfsr < 0.05), variant-feature pairs 

across the caudate, dentate gyrus, DLPFC, and hippocampus for four features (gene, transcript, exon, 

and junction). 

8. Data S8. BrainSeq_ancestry_binary_4features_4regions_allFeatures.txt.gz: Compressed text file 

of binary differential expression analysis (10 permutations) for genetic ancestry (binary) across the 

caudate, dentate gyrus, DLPFC, and hippocampus for four features (gene, transcript, exon, and 

junction). 

9. Data S9. DE_binary_validation_functional_enrichment_ancestry_AA_EA.xlsx: Excel file of GO-

term enrichment and GSEA for internal validation for genetic ancestry (binary) differentially expressed 

genes across the caudate, dentate gyrus, DLPFC, and hippocampus for four features (gene, transcript, 

exon, and junction). 

10. Data S10. BrainSeq_DEancestry_LDSC_AAonly.xlsx: Excel file of stratified LD score regression of 

admixed Black American differential expression analysis separated by direction of effect (all DEGs, 

upregulated in AA, or upregulated in EA) for genes (SNP proportion > 0.01) across the caudate, 

dentate gyrus, DLPFC, and hippocampus.  

11. Data S11. DMR_functional_enrichment_localAncestry_AAonly.xlsx: Excel file of GO-term 

enrichment for genetic ancestry differential methylation regions across the caudate, DLPFC, and 

hippocampus. 

12. Data S12. BrainSeq_DMR_global_local_comparison.tar.gz: Compressed directory of PDF of scatter 

plots comparing DNAm association with local and global ancestry for the caudate, DLPFC, and 

hippocampus. Plots are annotated with genetic ancestry DMR test results. 

13. Data S13. BrainSeq_est_prop_Bisque.Rdata: R variable containing estimated cell type proportions 

using Bisque for the caudate, dentate gyrus, DLPFC, and hippocampus. 

14. Data S14. gwas_summary_statistics_ldsc.xlsx: Excel file of GWAS summary statistics for 

heritability enrichment analysis. 
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