
Nature Neuroscience | Volume 25 | November 2022 | 1559–1568  1559

nature neuroscience

https://doi.org/10.1038/s41593-022-01182-7Resource

Analysis of the caudate nucleus 
transcriptome in individuals with 
schizophrenia highlights effects of 
antipsychotics and new risk genes

Kynon J. M. Benjamin1,2,3, Qiang Chen1,2, Andrew E. Jaffe    1,2,4,5,6,7,8, 
Joshua M. Stolz1, Leonardo Collado-Torres    1,9, Louise A. Huuki-Myers1, 
Emily E. Burke1, Ria Arora1, Arthur S. Feltrin    1,10, André Rocha Barbosa    1,11,12, 
Eugenia Radulescu1, Giulio Pergola1, Joo Heon Shin1,3, William S. Ulrich1, 
Amy Deep-Soboslay1, Ran Tao1, the BrainSeq Consortium*, 
Thomas M. Hyde    1,3,4, Joel E. Kleinman    1,2, Jennifer A. Erwin    1,2,3,4 , 
Daniel R. Weinberger    1,2,3,4,5  & Apuã C. M. Paquola    1,3 

Most studies of gene expression in the brains of individuals with 
schizophrenia have focused on cortical regions, but subcortical nuclei 
such as the striatum are prominently implicated in the disease, and 
current antipsychotic drugs target the striatum’s dense dopaminergic 
innervation. Here, we performed a comprehensive analysis of the genetic 
and transcriptional landscape of schizophrenia in the postmortem caudate 
nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 
individuals with schizophrenia and 44 individuals with bipolar disorder), 
210 from African and 233 from European ancestries. Integrating expression 
quantitative trait loci analysis, Mendelian randomization with the latest 
schizophrenia genome-wide association study, transcriptome-wide 
association study and differential expression analysis, we identified 
many genes associated with schizophrenia risk, including potentially 
the dopamine D2 receptor short isoform. We found that antipsychotic 
medication has an extensive influence on caudate gene expression. We 
constructed caudate nucleus gene expression networks that highlight 
interactions involving schizophrenia risk. These analyses provide a resource 
for the study of schizophrenia and insights into risk mechanisms and 
potential therapeutic targets.

Schizophrenia is a highly heritable, often devastating neuropsychiatric 
disorder that affects ~1% of the world population1. Recent genome-wide 
association studies (GWASs)2–4 identified nearly 270 loci associated with 
schizophrenia risk, 1 of which includes the gene DRD2, which encodes 

the dopamine D2 receptor. For 60 years, excessive dopaminergic modu-
lation of striatal function has been hypothesized to mediate psychosis5. 
Furthermore, dopamine was the first neurotransmitter implicated in 
schizophrenia, and the efficacy of most antipsychotic drugs is highly 
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of which (GTEx) includes caudate samples (BrainSeq Phase II dorso-
lateral prefrontal cortex (DLPFC) and hippocampus7, CommonMind 
Consortium (CMC) DLPFC10,11 and GTEx brain regions16,17). These results 
confirm the comparable quality of the RNA in this dataset, as detailed 
in the Supplementary Results. To examine expression specificity, we 
performed t-distributed stochastic neighbor embedding (t-SNE) on 
the caudate nucleus gene expression data with the BrainSeq DLPFC 
and hippocampus data (Supplementary Fig. 1a,b) and with GTEx cau-
date and other brain regions, which demonstrated clear brain region 
specificity (Supplementary Fig. 1c). Furthermore, we found that the 
BrainSeq brain regions separated from the GTEx brain regions using 
normalized gene expression (Supplementary Fig. 1d). We attribute this 
separation mainly to differences in RNA processing methods used by 
GTEx and BrainSeq. GTEx uses poly(A) enrichment, while BrainSeq uses 
total RNA with ribosomal depletion (RiboZero), which also explains 
GTEx showing higher rRNA rates than BrainSeq (Supplementary Fig. 
2). In addition to rRNA rates, we also compared RNA integrity num-
bers (RIN) and percent alignment with other datasets (CMC and GTEx) 
and found similar RIN ranges comparable to GTEx and CMC, while 
BrainSeq showed a lower alignment rate (Supplementary Fig. 2 and 
Supplementary Data 1). We attribute this lower alignment rate to the 
choice of using gene annotation for chromosomes only compared to 
GTEx, which included scaffolding.

Genetic regulation of gene expression in the caudate nucleus
To gain insight into how genetic risk for schizophrenia manifests in 
changes in RNA expression, we first identified transancestry eQTLs 
across multiple features (genes, transcripts, exons and junctions) 
in the BrainSeq caudate. Using Trans-Omics for Precision Medicine 
(TOPMed)-imputed genotypes to account for ancestral allele frequency 
differences and empirical Bayes meta-analysis with multivariate adap-
tive shrinkage (‘mash’18) modeling, we discovered cis-eQTLs (local false 
sign rate (lfsr) < 0.05) associated with 23,097 unique genes (protein 

correlated with the ability to block dopamine D2 receptors in the stria-
tum6. Yet, large-scale gene expression studies for schizophrenia in 
human postmortem brain tissue, such as the BrainSeq, PsychENCODE 
and CommonMind consortia, have focused principally on cortical 
areas7–11 in which dopamine D2 receptors are expressed at low levels and 
have not found evidence of a DRD2 mechanism of risk. The striatum, 
however, is also prominently implicated in schizophrenia pathogenesis 
and has high levels of DRD2 receptor expression12–15.

In this study, we performed a comprehensive analysis of the 
genetic and transcriptional landscape of the postmortem caudate 
nucleus from 443 donors (245 neurotypical individuals, 154 individu-
als with schizophrenia and 44 individuals with bipolar disorder; Fig. 1) 
from diverse ancestries (210 from African ancestry (AA) and 233 from 
European ancestry (EA)). We performed a transancestry expression 
quantitative trait loci (eQTL) analysis in the caudate and annotated 
hundreds of caudate-specific cis-eQTLs. Moreover, we integrated this 
eQTL analysis with expression and the latest schizophrenia GWAS and 
identified hundreds of genes showing a potential causal association 
with schizophrenia risk in the caudate nucleus, including a specific 
isoform of DRD2. We also highlight the effects of antipsychotic medi-
cation on gene expression in the caudate. Finally, we developed a new 
approach based on variational autoencoders to infer gene networks 
from expression data, which identified several modules enriched for 
genes associated with schizophrenia risk.

Results
Generation of a high-quality caudate nucleus dataset
In total, 443 caudate postmortem brain samples (245 neurotypical 
individuals, 154 individuals with schizophrenia and 44 individuals with 
bipolar disorder) were used in this study from diverse ancestries (210 
individuals of AA and 233 individuals of EA; Supplementary Table 1). As a 
new resource of gene expression in the human brain, we first examined 
RNA quality in the context of other publicly available datasets, only one 
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Fig. 1 | Overview of computational analysis. Using genotypes and RNA-
sequencing data from the postmortem caudate nucleus from 443 individuals, 
we interrogated genes, transcripts, exons and exon–exon junctions for 
associations with schizophrenia. We performed eQTL, SMR and TWAS analyses 
to identify genetic modulation of gene expression, integrating with genetic 
risk information from GWASs. We performed differential expression analysis 

to identify expression changes associated with disease status. We integrated 
our analysis with previously published DLPFC and hippocampus data. Using a 
new approach based on deep neural networks, we constructed gene expression 
networks to gain insight into interactions involving schizophrenia risk genes and 
uncovered potential new therapeutic targets; CTL, neurotypical individuals; SZ, 
schizophrenia; BP, bipolar disorder.
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coding and noncoding) across all features significant in at least one 
ancestry (Fig. 2a, Supplementary Table 2 and Data availability). When 
we compared these discovered gene-level eQTLs to the GTEx caudate 
nucleus (n = 194 neurotypical individuals, all EA), we obtained a high 
replication rate (π1 = 0.76; Supplementary Fig. 3) with our EA individu-
als (n = 233) and slightly lower replication rates with our AA individu-
als (n = 210, π1 = 0.65; Supplementary Fig. 3) and combined (n = 443, 
π1 = 0.67; Supplementary Fig. 3). Not surprisingly, this shows that eQTL 
replication rates are higher in studies from similar ancestries and high-
lights the molecular impact of diversity in genetic studies.

To illuminate the regional specificity of caudate eQTLs, we next 
asked about the proportion of eQTLs detected in one or across multi-
ple brain regions. To this end, we used mash modeling to assess and 
estimate effect sizes across brain regions from the BrainSeq consor-
tium accounting for overlapping sample donors with a correlation 

matrix (Supplementary Data 2). When we examined significant eQTLs 
(lfsr < 0.05) across the BrainSeq brain regions (caudate, DLPFC and 
hippocampus), we found a large degree of sharing (>75%), with the 
vast majority (>97%) of eQTLs showing concordant directionality 
(Fig. 2b). This large degree of sharing extended to transcript-, exon- 
and junction-level eFeatures (eFeature: a transcriptional feature 
(gene, transcript, exon or exon–exon junction) having at least one 
cis-eQTL) (Supplementary Fig. 4). This was reflected in the small 
number of caudate-specific eGenes (313 (1.7%); Fig. 2c). Similar to the 
caudate-specific eGenes (eGene: a gene having at least one cis-eQTL), 
we identified a relatively small proportion of DLPFC-specific (1,071 
(5.3%)) and hippocampus-specific (31 (0.2%)) eGenes of the total 20,088 
eGenes significant in at least one brain region (see Data availability 
for the full set of brain region interaction eQTL results). When we 
examined these brain region-specific eGenes, we found that none 
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Fig. 2 | Genetic regulation of expression in the caudate nucleus. a, The four 
most significant gene-level cis-eQTLs by lfsr with ancestry expression separated 
by allele (n = 443 individuals; 210 AA and 233 EA). b, Heat map of the proportion 
of eGenes shared across BrainSeq brain regions within a factor of 0.5 effect 
size (top) and sign matched (bottom). c, Representative box plot of gene-level 

caudate-specific cis-eQTL (n = 443, 378 and 395 individuals for the caudate, 
DLPFC and hippocampus, respectively). d, Dopamine receptor D2 gene cis-eQTL 
significant (lfsr < 0.05) in the AA population for the caudate nucleus (n = 443 
individuals; 210 AA and 233 EA). Box plots show the median and first and third 
quartiles, and whiskers extend to 1.5× the interquartile range.
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showed significant differences in residualized expression (analysis of 
variance, P > 0.05). Altogether, this suggests that most cis-eQTLs have 
an intrinsic genotype-to-gene expression directionality relationship 
that is independent of brain region or cell-type composition.

Because of the long-standing interest in a potential role of dopa-
mine in schizophrenia, we examined the eQTL results for DRD2 in the 
caudate. The DRD2 gene generates two principal isoforms, D2L (long) 
and D2S (short), via alternative splicing of exon 6 with different localiza-
tion and function (Supplementary Fig. 5a). D2L functions as a postsyn-
aptic DA receptor, while D2S functions as a presynaptic autoreceptor, 
participating in the regulation of dopamine production and release19–21. 
Here, we found an eQTL for DRD2 at the gene level that was significant 
in AA (lfsr < 0.05; chromosome 11 (chr11): 113546559:A:G; Fig. 2d) as well 
as eQTLs (lfsr < 0.05) for several DRD2 genomic features (transcripts, 
exons and junctions; Supplementary Figs. 5–7), including a nominal 
association of the DRD2 short specific junction ( junction between exon 
5 and 7; EA nominal P value of 1.4 × 10–3) with the schizophrenia risk 
DRD2 locus index single nucleotide polymorphism (SNP; rs61902811, 
GWAS P value of 5.3 × 10–15)4. These junction-level DRD2 eQTLs rep-
licated in GTEx caudate (nominal P value of 4.2 × 10–3, q = 0.61). We 
found no eQTLs across genomic features (genes, transcripts, exons 
and junctions) for the DRD2 long specific isoform.

All eQTL analyses are available for visualization and download at 
https://erwinpaquolalab.libd.org/caudate_eqtl/.

Integration of eQTL and schizophrenia GWAS in caudate
To gain insight into the contribution of the caudate nucleus to schiz-
ophrenia risk, we sought to prioritize candidate schizophrenia risk 
genes in the EA individuals using colocalization, summary-based Men-
delian randomization (SMR)22 and transcriptome-wide association 
study (TWAS)23 analyses. We found that nine genes (ELAC2, GGNBP2, 
LINC02696, MPPED1, MYO19, STAT6, YOD1, ZNF823 and ZNF835) colo-
calized with Psychiatric Genomics Consortium version 3 (PGC3) GWAS 
(regional colocalization probability (RCP) > 0.5) and an additional 
gene (FTCDNL1; RCP = 0.4977 in PGC3) that colocalized (RCP > 0.5) 
in PGC2 + CLOZUK (Supplementary Data 3). Only 2 of these 10 genes 
(ZNF823 and ZNF835) also overlapped with PGC3 schizophrenia 
risk-prioritized genes.

We next performed SMR analysis and identified 47, 159, 141 and 199 
genes, transcripts, exons and junctions, respectively, associated with 
schizophrenia risk4 (Fig. 3a, Supplementary Table 3 and Supplementary 
Data 4), which was four times the number identified with colocalization 
analysis (Supplementary Table 4)17,24. The most significant gene-level 
SMR associations by false discovery rate (FDR) were primarily noncod-
ing RNAs (Supplementary Table 5). More importantly, we found high 
correlation of SMR effect sizes between GTEx caudate and our signifi-
cant SMR genes (Spearman, ρ > 0.37 and P < 0.01) as well as significant 
enrichment (Fisher’s exact test, P < 0.05) of overlapping genes with 
GTEx caudate SMR analysis. Interestingly, we found only three genes 
in this analysis (ALMS1P1, CNTN4 and KANSL1) that overlapped with the 
PGC3-prioritized schizophrenia risk genes.

Following SMR, we performed TWAS analysis in the caudate 
nucleus. We identified 553 genes, 1,117 transcripts, 4,779 exons and 
1,558 junctions with significant TWAS association (FDR < 0.05) for 
schizophrenia PGC3 GWAS summary statistics4 (Supplementary 
Table 6 and Supplementary Data 5). For gene-level TWAS associations, 
we found significant gene term enrichment (hypergeometric test, 
FDR < 0.05) for the major histocompatibility complex protein complex 
and antigen processing and presentation for genes that show a positive 
correlation with schizophrenia risk (Supplementary Fig. 8). Although 
somewhat divergent from Gene Ontology (GO) term enrichment analy-
ses on TWAS gene sets based on gene expression in cortical regions, 
which have emphasized synaptic function and neurodevelopmental 
processes3,7, these results were highly correlated with SMR significant 
associations, showing consistency of directionality (Spearman, ρ > 0.77 

and P < 0.01) as well as significant enrichment of overlapping genes (17 
genes, Fisher’s exact test, P < 0.01), including ALMS1P1, which was 1 of 
23 genes overlapping PGC3-prioritized genes (Supplementary Data 6).

Interestingly, and consistent with the GO analyses, the comparison 
among TWAS genes (PGC2 + CLOZUK3) for caudate, DLPFC and hip-
pocampus also revealed that a number of TWAS genes were significant 
only for caudate, while others were shared across tissues, as shown, 
respectively, in red and blue in the Manhattan plot in Fig. 3b. Compar-
ing the caudate nucleus TWAS results with those of hippocampus and 
DLPFC7, we observed considerable overlap of heritable genes across the 
three brain regions that showed a high degree of brain region-specific 
significant gene-level TWAS associations (Supplementary Fig. 9). Addi-
tionally, we found that 64 of the 82 overlapping TWAS significant genes 
shared across all brain regions did not reach GWAS significance in the 
reference clinical GWAS study (Supplementary Data 7). Furthermore, 
TWAS associations across brain regions demonstrated high correla-
tion of direction of effect (Spearman correlation, P < 0.01 and ρ > 0.75;  
Fig. 3c), which is also observed between DLPFC and hippocampus7.

Remarkably, however, we found 277 TWAS genes (FDR < 0.05; 64 
genes at Bonferroni P value of <0.05) unique to caudate compared 
with other schizophrenia TWAS analyses7,25–27, where 174 (5 genes at 
Bonferroni P value of <0.05) of these genes did not reach GWAS sig-
nificance in the clinical GWAS sample (Supplementary Table 7). These 
region-selective TWAS findings underscore that the mechanisms of 
genetic risk for schizophrenia are not solely represented in one brain 
region or functional circuit but implicate distributed brain systems 
that mediate diverse information processing streams.

Given the nominal association with schizophrenia risk variants for 
the DRD2 short isoform, we next examined the SMR and TWAS results 
with respect to the DRD2 locus. Here, we found significant negative 
associations for the DRD2 short-specific junction ( junction 5–7; TWAS 
FDR = 0.049) and transcript (ENST00000346454.7; SMR FDR = 0.022 
and HEIDI P = 0.24; Supplementary Fig. 10), implicating reduced expres-
sion of this specific transcript with increased schizophrenia risk. We 
found no association with DRD2 long-specific isoforms. While the DRD2 
short-specific junction 5–7 TWAS association did not replicate in the 
GTEx caudate nucleus, we found nominal replication in the SMR results 
specifically again for the short isoform (ENST00000346454.7; SMR 
P = 0.049 and HEIDI P = 0.14). This replication in addition to the signifi-
cant association in SMR and TWAS analysis suggests DRD2 short and not 
DRD2 long as a putative causal isoform associated with schizophrenia 
risk in the striatum of EA individuals. Two other genes in the DRD2 GWAS 
locus (TTC12 (ENST00000393020) and DRD2 (ENST00000542616), a 
seven-amino acid-long protein-coding isoform) showed nominal asso-
ciation using multiple SNPs but not after correcting for multiple test-
ing. These transcripts were also not TWAS positive. Two other genes in 
the DRD2 GWAS locus (ANKK1 (ENST00000303941) and RP11-159N11.3 
(ENST00000546284)) that were SMR positive in the BrainSeq caudate 
did not replicate in GTEx.

Schizophrenia-related differential expression in the caudate
Despite the caudate nucleus having been implicated in schizophrenia 
and being a likely principal target of antipsychotic medication, there are 
limited data in the caudate of differentially expressed RNA features in 
individuals with schizophrenia compared to neurotypical individuals. 
Here, we analyzed RNA-sequencing data from 393 individuals aged 17 
and older, and 154 were diagnosed with schizophrenia and 239 were 
neurotypical individuals (Methods). We observed extensive differential 
gene expression for schizophrenia (2,701 genes at FDR < 0.05; Fig. 4a) 
with GDNF-AS1 (glial cell-derived neurotrophic factor antisense RNA 1) 
and TH (tyrosine hydroxylase) as the top up- and downregulated genes, 
respectively (Supplementary Fig. 11). As shown in the KEGG pathway 
map of the dopaminergic signaling pathway, TH (the rate-limiting 
enzyme in dopamine synthesis) and dopamine receptors DRD2 and 
DRD3 were differentially expressed (Supplementary Fig. 12). A summary 
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of differentially expressed features can be found in Supplementary 
Table 8 and Supplementary Data 8.

To identify biological themes associated with differentially 
expressed genes (DEGs), we performed a hypergeometric test and 
gene set enrichment analysis for term enrichment against the GO data-
base. The upregulated features are enriched for synapse organization 
and ion transport, whereas the downregulated features are enriched 
for myelination and negative regulation of neuron differentiation  

(Fig. 4b). These results, which notably diverge from those related 
to genetic risk in caudate, suggest, perhaps not surprisingly, that in 
postmortem analysis of schizophrenia brain, the disease and its con-
sequences, including treatment and lifestyle changes, likely have a 
major impact on different structural and functional properties of the 
caudate nucleus.

We next compared DEGs in schizophrenia in caudate with those 
of DLPFC and hippocampus in BrainSeq samples (Fig. 4c) and CMC 
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DLPFC with and without surrogate variable analysis (SVA) correction 
(Supplementary Fig. 13a). The caudate nucleus has substantially more 
DEGs (2,701 DEGs, FDR < 0.05) than BrainSeq DLPFC and hippocampus 
(245 and 48 DEGs, respectively7) as well as CMC DLPFC with or without 
SVA correction (419 and 573 DEGs, respectively10,11). While the majority 

of DEGs show region selectivity and there is remarkably no DEG overlap 
for all three brain regions, there is statistically significant pairwise 
overlaps between caudate and DLPFC (P = 9.4 × 10–5, Fisher’s exact 
test), between DLPFC and hippocampus (P = 7.8 × 10–6, Fisher’s exact 
test), between CMC DLPFC SVA corrected and caudate (P = 1.2 × 10–6, 
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Fisher’s exact test) and between CMC DLPFC with and without SVA cor-
rection and BrainSeq DLPFC (P = 2.1 × 10–13 and P = 9.4 × 10–3, Fisher’s 
exact test, respectively). There is also a significant positive pairwise 
correlation for all gene t-statistics (Spearman P < 0.001; ρ = 0.22 and 
0.13 for caudate comparison with DLPFC and hippocampus, respec-
tively; Supplementary Fig. 14). It is further noteworthy that among the 
genes that are differentially expressed in two brain regions, several 
have discordant directions of effect for schizophrenia (Supplementary 
Figs. 13b and 15 and Supplementary Data 9), highlighting the impor-
tance of studying multiple brain regions when searching for targets 
for drug development.

Interestingly, we found that the differential expression of the DRD2 
gene (Supplementary Fig. 16) was driven exclusively by the dysregula-
tion of the short isoform, as the DRD2 long isoform did not show dif-
ferential expression (Fig. 4d), whereas the short isoform is upregulated 
in the caudate nucleus of individuals with schizophrenia. Consistent 
with this, for exons 2, 3, 4, 5, 7 and 8, which are present in both long and 
short isoforms, we observed a similar increase in expression (log2 (fold 
change) of 0.12–0.15, FDR < 0.05; Fig. 4d,e and Supplementary Fig. 17) 
in individuals with schizophrenia, whereas for exon 6, which is only 
present in the long isoform, the difference in expression (log2 (fold 
change) of 0.07; Fig. 4d) was not statistically significant (FDR = 0.31). 
Furthermore, only the junction associated with D2S (5–7) and not 
junctions specific to D2L (5–6 and 6–7) were upregulated in individuals 
with schizophrenia (Fig. 4e and Supplementary Fig. 18). These data sug-
gest opposing associations of trait (that is, downregulation) and state  
(that is, upregulation) with expression of D2S.

Effects of antipsychotic drugs on caudate expression and 
eQTL
Because most individuals with schizophrenia receive chronic treat-
ment with antipsychotic drugs and these drugs target D2-rich brain 
regions, such as the caudate, our DEG results may be heavily influ-
enced by drug treatment. With this in mind, we sought to examine 
the influence of antipsychotics on expression by testing for differ-
ences in expression between individuals with schizophrenia stratify-
ing for antipsychotic status detected at time of death (104 with and 
49 without; Supplementary Data 10) compared to 239 neurotypical 
individuals. We found 2,692 DEGs between individuals taking antip-
sychotics and neurotypical individuals (FDR < 0.05) compared to 665 
DEGs (FDR < 0.05) between individuals not taking antipsychotics and 
neurotypical individuals. These differences, in part, reflect power 
discrepancies. We found an overlap of 331 of the DEGs shared between 
individuals with and without antipsychotics (49.6% of no antipsychot-
ics schizophrenia DEGs). Additionally, 1,925 and 520 DEGs overlapped 
with schizophrenia DEGs with (71.6%) and without (78.0%) antipsychot-
ics, respectively. Similar patterns of overlap were observed when we 
expanded to additional expressed features (Supplementary Fig. 19 and 
Supplementary Data 11) and have been seen elsewhere28.

We next compared transcriptional signature changes between 
caudate samples from individuals with schizophrenia with and with-
out antipsychotics detected at time of death to three rodent striatum 
antipsychotic drug studies29–31. From this analysis, we found that only 
a small fraction of the DEGs detected from our analysis were present in 
these rodent studies primarily due to their small DEG detection (Sup-
plementary Fig. 20). Interestingly, for two of the three rodent antipsy-
chotic studies, we found that the majority of overlapping DEGs were not 
shared between schizophrenia samples with or without antipsychotics 
groups. As our schizophrenia without antipsychotics group all had at 
some point in their lifetime been on antipsychotics, this could reflect 
the difference between humans and rodents with respect to acute and 
long-term antipsychotic effects in the striatum.

While these results reflect associations with drug status at the 
time of death, there is no way of distinguishing the long-term effects 
of antipsychotics on gene expression compared to effects related to 

schizophrenia diagnosis per se. For that reason, we prefer to emphasize 
the alternative approaches, such as the eQTL, colocalization, TWAS 
and SMR analyses described above, which use genotype information to 
determine significant associations with genetic risk for schizophrenia, 
which do not stratify by participant status or presence of antipsychotics 
at time of death (Supplementary Fig. 21).

To address potential effects of antipsychotics on the eQTL analysis, 
we performed additional eQTL analyses separately for neurotypical 
individuals (n = 245), individuals with schizophrenia taking antip-
sychotics (n = 104) and individuals with schizophrenia not taking 
antipsychotics (n = 49; Methods). Here, we found that all comparisons 
showed a significant positive correlation (Spearman P < 0.01, ρ > 0.09; 
Supplementary Fig. 22), which decreased based on sample size of the 
eQTL analysis. Moreover, at significant levels (permutation q < 0.05), 
we found that correlations increased to greater than 92% (Spearman 
P < 0.01, ρ > 0.92; Supplementary Fig. 22).

For additional examination of the potential influence of antip-
sychotics on genotypes, we examined nominal P value distribution 
between antipsychotic-specific DEGs (DEGs unique to schizophre-
nia with antipsychotics detected at time of death compared to com-
bined analysis and schizophrenia without antipsychotics detected 
at time of death) and those specific DEGs from neurotypical versus 
schizophrenia without antipsychotics detected at time of death. We 
found that antipsychotic-specific DEGs showed more significant 
distribution of P values for diagnosis interaction, all samples and 
neurotypical-only eQTL analyses (Supplementary Fig. 23a). Addi-
tionally, this increase in significant P value distribution replicated in 
GTEx caudate (neurotypical individuals) as well as BrainSeq DLPFC 
and hippocampus (Supplementary Fig. 23b). Furthermore, when we 
examined the most significant by P value antipsychotic DEG eQTL from 
the neurotypical-only analysis (SULT1C2), we found that it was widely 
expressed across the 44 GTEx tissues as well as a shared eQTL across 
multiple tissues (Supplementary Fig. 24), suggesting that the DEGs’ 
higher eGene P value distribution is not associated with antipsychotic 
effect on expression. Taken together, these results suggest that eQTL 
effect sizes are not significantly influenced by treatment status.

Inferring caudate coexpression networks with deep learning
To gain new insights on gene expression relationships in the caudate, 
we created gene networks with variational autoencoders (GNVAE;  
Fig. 5a; https://github.com/apuapaquola/GNVAE), a new method 
based on deep neural networks to infer biological networks from gene 
expression data. GNVAE uses variational autoencoders to obtain a 
low-dimensional representation of each gene’s expression pattern 
across individuals. It then uses this representation to build a gene neigh-
borhood graph and to assign genes to modules (Methods). We applied 
GNVAE to the set of 393 adult caudate nucleus samples (154 from indi-
viduals with schizophrenia and 239 from neurotypical individuals) 
and found 21 modules (Fig. 5b and Supplementary Data 12). Of these 
21 modules, 18, 7 and 3 modules were either enriched or depleted in 
schizophrenia DEGs, TWAS genes and PGC3 GWAS-prioritized genes, 
respectively (Fisher’s exact test, FDR < 0.05). We found no significant 
enrichment for SMR genes, potentially due to the low number of genes 
in this set. Interestingly, modules 0 and 1 were associated with GWAS, 
TWAS and DEGs, suggesting that specific expression patterns are 
shared in these modules. Notably, the DRD2 gene and DRD2 junction 
5–7 (specific for the presynaptic autoreceptor isoform) were attributed 
to module 11, which showed the most significant enrichment for PGC3 
GWAS-prioritized genes as well as functional enrichment for regulation 
of dopamine secretion, chemical synaptic transmission, axon guid-
ance and learning (Fig. 5c and Supplementary Data 12), a remarkable 
concordance with the presumed biology of the presynaptic dopamine 
receptor. By contrast, junctions 5–6 and 6–7 (from the postsynaptic 
isoform) were attributed to a different module, module 0, which was 
enriched in a broad range of GO terms, including translation, protein 
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stabilization and transport, dendrite morphogenesis and RNA splicing 
(Fig. 5d and Supplementary Data 12). It is noteworthy that the GNVAE 
approach dissociated the isoforms of DRD2 into separate modules with 
divergent biological functions as might have been predicted by their 
anatomical divergence.

We also applied weighted gene coexpression network analysis 
(WGCNA)32 on the same samples and found significant enrichment for 
DEGs in 20 of the 22 modules. In contrast to GNVAE, no modules showed 
enrichment for PGC3 GWAS-prioritized genes after correcting for 
multiple testing, and two modules (turquoise and pink) showed enrich-
ment or depletion for TWAS genes (Fisher’s exact test, FDR < 0.05; 
Supplementary Fig. 25 and Supplementary Data 13). Unlike the GNVAE 
modules, the DRD2 junctions 5–6, 5–7 and 6–7 were all attributed to 
the same module (light green), which showed enrichment for the 
glutamatergic synapse and was also significantly enriched for DEGs. 
Additionally, the DRD2 gene separated to a different module (light 
cyan) from its individual junction reads, where GO terms associated 
with the synapse, similar to GNVAE modules 0 and 11, were enriched 
(Supplementary Fig. 26) and showed enrichment for DEGs.

Collectively, these data suggest that expression representations 
captured by GNVAE tend to place genes in biologically meaningful 
neighborhoods, which can provide insight into potential interactions 
if these genes are targeted for therapeutic intervention. Further, that 

GNVAE modules show enrichment for both trait and state factors sug-
gests that insights may emerge from this approach that are missed in 
traditional WGCNA analysis.

Discussion
We have profiled the genetic and transcriptional landscapes of the 
caudate nucleus with respect to schizophrenia in the largest human 
postmortem caudate dataset to date. We annotated genetic regulation 
of gene expression across four genomic features (gene, transcript, 
exon and exon–exon junction), finding millions of statistically signifi-
cant cis-eQTLs in a transancestry analysis. We identified hundreds of 
new genomic associations (gene, transcript, exon and junction) with 
schizophrenia risk for the caudate using colocalization, SMR and TWAS 
analyses in EA individuals. Although a recent study has shown that 
TWAS inflates type 1 error rates due to unmodeled genetic uncertainty33, 
the high correlation with SMR effect sizes and the overall divergent 
regional data from TWAS analysis highlight the importance of a multi-
ple brain region approach in deciphering the underlying mechanisms 
of complex disorders, like schizophrenia risk, using summary-based 
integration methods.

We identified 2,701 genes in caudate that were differentially 
expressed between individuals with schizophrenia and neurotypical 
individuals, which was substantially more than in the previous BrainSeq 
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study of DLPFC and hippocampus largely from the same individuals 
(245 and 48 DEGs, respectively, at FDR < 0.05). It is likely that many 
if not most of the DEGs reflect state phenomena, such as drug treat-
ment, as we found significant transcriptional changes associated with 
antipsychotic usage similar to a concurrent analysis28. This, however, 
did not significantly influence the eQTL effect sizes.

We developed GNVAE, a new approach to infer biological networks 
from gene expression data using deep neural networks. The gene 
expression representations captured by GNVAE tend to place genes 
in biologically meaningful neighborhoods and also reveal modules 
enriched for both trait- and state-associated genes, which can be used 
as a resource to identify potential interactions for genes to be targeted 
for therapeutic intervention.

The caudate nucleus is rich in DRD2 receptors and has been a focus 
of studies of the dopamine system in schizophrenia for decades, using 
both postmortem analyses and in vivo radioreceptor imaging34,35. It 
has generally been assumed that the dopamine system is overactive 
and that, in particular, expression of the DRD2 receptor is increased, 
potentially facilitating increased dopamine signaling34. However, our 
data suggest that decreased expression specifically of the short isoform 
of the D2 receptor in the caudate is a potentially causative genetic risk 
factor for schizophrenia. No such association was found for the long 
isoform of DRD2 in our data nor in GTEx. Notably, although we did not 
find colocalization of DRD2 on the gene level, D2S-specific transcript 
(SMR) and junction 5–7 (TWAS) showed a significant association with 
schizophrenia risk for EA individuals, which was nominally replicated 
in the GTEx caudate nucleus with SMR analysis. These results raise the 
possibility that an underlying causative gene for schizophrenia risk in 
the DRD2 locus is the D2S and not D2L isoform. If this is the case, then 
it suggests that the mechanism of risk related to DRD2 is compromised 
presynaptic autoregulation and, as a result, a bias toward increased 
synaptic dopamine in the caudate nucleus. This conclusion, however, 
is tentative. As such, further isoform-level analyses (computational 
and experimental) are necessary to verify and validate this potential 
DRD2 mechanism for schizophrenia risk.

In summary, we provide a comprehensive genetic and transcrip-
tional analysis of the caudate nucleus with respect to schizophrenia, 
with multiple new genetic associations and potential therapeutic 
targets. We identify a potential mechanism of the dopamine link with 
schizophrenia involving presynaptic autoreceptor regulation of 
dopamine release, suggesting that psychosis risk involves relatively 
compromised regulation of release, which, in the presence of events 
that lead to increased dopamine neuronal activity, would bias toward 
increased synaptic dopamine. It is tempting to speculate that indi-
viduals so genetically affected under stress, when dopamine activity 
is increased, fail to appropriately modulate this activity at the synapse 
and are susceptible to sustained increased dopamine signaling when 
the context is no longer appropriate to reinforce stimuli converging on 
striatal neurons. We further speculate that the development of drugs 
targeting select presynaptic components of the dopamine autoregula-
tion system might open new avenues in the treatment of psychosis.
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Methods
The research described herein complies with all relevant ethical regu-
lations. Postmortem human brain tissue was obtained as previously 
described7. Briefly, tissues were primarily obtained by autopsy from the 
Offices of the Chief Medical Examiner of the District of Columbia and 
of the Commonwealth of Virginia, Northern District, all with informed 
consent from the legal next of kin (protocol 90-M-0142 approved by the 
National Institute of Mental Health (NIMH)/National Institutes of Health 
(NIH) Institutional Review Board). The National Institute of Child Health 
and Human Development Brain and Tissue Bank for Developmental 
Disorders (https://medschool.umaryland.edu/BTBank) provided infant, 
child and adolescent brain tissue samples under the NO1-HD-43368 
and NO1-HD-4-3383 contracts. Additionally, donations of postmortem 
human brain tissue were provided with informed consent by next of kin 
from the Office of the Chief Medical Examiner for the State of Maryland 
under protocol number 12-24 from the State of Maryland Department of 
Health and Mental Hygiene and from the Office of the Medical Examiner, 
Department of Pathology, Homer Stryker, Maryland School of Medicine 
under protocol number 20111080 from the Western Institute Review 
Board. The Institutional Review Board of the University of Maryland at 
Baltimore and the State of Maryland approved the study protocol. The 
Lieber Institute for Brain Development (LIBD) received the tissues by 
donation under the terms of a material transfer agreement.

Human postmortem brain tissue acquisition
Human postmortem brain tissue was collected at several sites for this 
study. Many samples were obtained at the Clinical Brain Disorders 
Branch at the NIMH from the Northern Virginia and District of Columbia 
Medical Examiners’ Office, according to NIH Institutional Review Board 
guidelines (protocol 90-M-0142). These samples were transferred to 
the LIBD under a material transfer agreement with the NIMH. Additional 
samples were collected at the LIBD according to a protocol approved 
by the Institutional Review Board of the State of Maryland Department 
of Health and Mental Hygiene (12-24) and the Western Institutional 
Review Board (20111080).

Audiotaped informed consent to study brain tissue was obtained 
from the legal next of kin on every case collected at the NIMH and LIBD. 
Details of the donation process and specimen handling are described 
previously36. After next of kin provided audiotaped informed consent 
to brain donation, a standardized 36-item telephone screening inter-
view was conducted (the LIBD autopsy questionnaire) to gather addi-
tional demographic, clinical, psychiatric, substance abuse, treatment, 
medical and social history. A psychiatric narrative summary was written 
for every donor to include data from multiple sources, including the 
autopsy questionnaire, medical examiner documents (investigative 
reports, autopsy reports and toxicology testing), macroscopic and 
microscopic neuropathological examinations of the brain and exten-
sive psychiatric, detoxification and medical record reviews and/or 
supplemental family informant interviews using the mini international 
neuropsychiatric interview. Two board-certified psychiatrists inde-
pendently reviewed every case to arrive at DSM-V lifetime psychiatric 
and substance use disorder diagnoses, including schizophrenia and 
bipolar disorder, as well as substance abuse disorders, and if for any 
reason agreement was not reached between the two reviewers, a third 
board-certified psychiatrist was consulted.

All donors were free from significant neuropathology, including 
cerebrovascular accidents and neurodegenerative diseases. Each 
individual was diagnosed retrospectively by two board-certified psy-
chiatrists according to the criteria in the DSM-IV. Brain specimens from 
the Clinical Brain Disorders Branch were transferred from the NIMH to 
the LIBD under a material transfer agreement. Available postmortem 
samples were selected based on RNA quality (RIN ≥ 5).

A toxicological analysis was performed in each case. The 
non-psychiatric non-neurological neurotypical individuals had no known 
history of significant psychiatric or neurological illnesses, including 

substance abuse. Positive toxicology was exclusionary for neurotypical 
individuals but not for individuals with psychiatric disorders.

Participant details
In total, 443 caudate postmortem brain samples were used in this study. 
The demographic data are summarized in Supplementary Table 1. In 
brief, the caudate samples contained 154 individuals with schizophre-
nia, 44 individuals with bipolar disorder and 245 non-psychiatric neu-
rotypical individuals. Supplementary Data 10 includes individual-level 
demographic information, including sex, ancestry and age of all the 
donor samples.

Human postmortem brain processing and dissections
The caudate nucleus was dissected, pulverized and stored at –80 °C. 
Briefly, after removal from the calvarium, brains were examined, photo-
graphed and weighed, and the brainstem and cerebellum were removed 
via transection just above the quadrigeminal plate. The circle of Willis 
was dissected from the ventral surface of the brain, and the pineal gland 
was removed. The hemispheres were separated along the midline, and 
each hemisphere was cut into approximately 1-cm-thick coronal slabs 
from the frontal pole to the occipital pole. The cerebellar hemispheres 
were sectioned along the midline through the vermis, and each hemi-
sphere was cut horizontally into two equal blocks. The brainstem was 
sectioned into two midbrain blocks, two pontine blocks, two medullary 
blocks and one block of the upper cervical spine, cut perpendicularly 
to the long axis of the brainstem. Slabs and blocks were flash-frozen in a 
slurry of dry ice and isopentane and stored in zip lock bags inside labeled 
cardboard boxes at –80 °C until retrieval for caudate dissection.

The caudate nucleus was dissected from the slab containing the 
caudate and putamen at the level of the nucleus accumbens. The cau-
date was dissected from the dorsal third of the caudate nucleus, lateral 
to the lateral ventricle, to make certain that the caudate dissections did 
not impinge on the nucleus accumbens. Dissections were performed 
under visual guidance using a hand-held dental drill on a tray over dry 
ice. Approximately 250 mg of caudate was moved per individual before 
pulverization. Tissue was kept frozen at all times throughout the brain 
dissection and pulverization steps.

Genotype data processing
Genotype data were processed as previously described7 with slight 
modifications. Briefly, genotyping with Illumina BeadChips was con-
ducted using DNA extracted from cerebellar tissue according to the 
manufacturer’s instructions. Genotype data were processed and nor-
malized with crlmm37–40, an R/Bioconductor package, separately by 
platform. Imputation was done on the TOPMed imputation server41,42 
using Minimac4 (ref. 43) on the prefiltered genotype data and using as 
reference panels phased genotype data from Haplotype Reference 
Consortium (https://ega-archive.org/studies/EGAS00001001710). We 
performed quality control using McCarthy Tools (https://www.well.
ox.ac.uk/~wrayner/tools/HRC-1000G-check-bim-v4.3.0.zip). Our geno-
type data were phased per chromosome using eagle (version 2.4)44.  
The preimputation data were lifted from hg19 to hg38 coordinates 
preimputation with liftOver45. For postimputation, we retained com-
mon variants (minor allele frequency > 1%) with missing variant and 
sample call rates less than 10% and not in Hardy–Weinberg equilibrium 
(P > 1 × 10–10) using PLINK2 (v2.00a3LM)46,47. We then identified linkage 
disequilibrium (LD)-independent variants to use for population strati-
fication of samples with multidimensional scaling. The first component 
separated samples by ethnicity. These processing and quality control 
steps resulted in 11,474,007 common variants for downstream analysis.

RNA sequencing
Samples were sequenced as previously described7. Briefly, RNA was 
extracted using the QIAGEN AllPrep DNA/RNA Mini kit, which con-
currently extracted DNA and total RNA. Following RNA extraction, 
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sequencing libraries were prepared from 300 ng of total RNA using the 
TruSeq Stranded Total RNA Library Preparation kit with RiboZero Gold 
rRNA depletion. For quality control, synthetic External RNA Controls 
Consortium (ERCC) RNA Mix 1 was spiked into each sample. These 
paired-end, strand-specific libraries were sequenced on an Illumina 
HiSeq 3000 at the LIBD Sequencing Facility across multiple lanes. We 
generated FASTQ files using the Illumina Real-Time Analysis module 
by performing image analysis, base calling and the BCL Converter 
(CASAVA v1.8.2). The reads were aligned to the hg38/GRCh38 human 
genome (GENCODE release 25, GRCh38.p7, chromosome only) using 
HISAT2 (v2.0.4)48 and Salmon (v0.7.2)49 using the reference transcrip-
tome to initially guide alignment based on annotated transcripts. The 
synthetic ERCC transcripts were quantified with Kallisto (v0.43.0)50.

RNA data processing
Counts were generated as previously described7. Briefly, sorted BAM 
files from HISAT2 alignments were generated and indexed using SAM-
tools (v1.6; HTSlib v1.6). Alignment quality was assessed using RSeQC 
(v2.6.4)51. The transcriptomes were characterized using four genomic 
features: (1) genes, (2) exons, (3) transcripts and (4) exon–exon junc-
tions. For transcripts, estimated counts were extracted for Salmon files 
for downstream differential expression analysis.

 1. We generated gene counts using the SubRead utility feature-
Counts (v1.5.0-p3)52 for paired-end, reversed-stranded read 
counting.

 2. We also generated exon counts using featureCounts for 
paired-end, reversed-stranded read counting.

 3. We generated transcript counts and transcripts per million 
(TPM) estimates using Salmon.

 4. We extracted exon–exon splice junctions from BAM files filtered 
for primary alignments using regtools (v0.1.0)53 and bed_to_
juncs script from TopHat2 (ref. 54).

Quality control and sample selection
Quality control of samples was determined as previously described7. 
Briefly, samples were checked for four quality control measures: (1) 
ERCC concentrations, (2) genome alignment rate (>70%), (3) gene 
assignment rate (> 20%) and (4) mitochondrial mapping rate (<6%). 
We dropped 21 samples for poor quality control based on the above 
measures, resulting in 464 samples after quality control. Next, we 
selected samples for age (>13) and TOPMed genotype availability for 
a final number of 443 samples.

Degradation data generation
The quality SVA (qSVA) algorithm uses data from a separate 
RNA-sequencing assay measuring RNA degradation in brain tissue55. 
Aliquots of 100 mg of pulverized caudate nucleus tissue from five 
individuals were left on dry ice and placed at room temperature until 
reaching the respective time interval, at which point the tissue was 
placed back onto dry ice. The four time intervals tested were 0, 15, 
30 and 60 min, with the 0-min aliquot remaining on dry ice for the 
entirety of the experiment. RNA extraction began immediately after 
the end of the final time interval, and RiboZero RNA-sequencing 
libraries were prepared for each time point and each individual. From 
the RNA-sequencing data, the set of 1,000 expressed regions7 most 
affected by RNA degradation was determined. Then, the expression 
at these 1,000 regions for the caudate samples was calculated to 
form the caudate nucleus degradation matrix, from which the top 13 
principal components (PCs) were selected using the BE algorithm56 
while considering diagnosis status, age at time of death, sex, mito-
chondrial mapping rate, rRNA mapping rate, total assigned reads 
to gene proportion and the first five ancestry PCs. These 13 PCs are 
referred to as qSVs and used as adjustment variables in differential 
expression analysis.

Cell-type deconvolution
Deconvolution was performed with the ReferenceBasedDecomposi-
tion function from the R package BisqueRNA version 1.0.4 (ref. 57) using 
the use.overlap = FALSE option. The single-cell reference dataset used 
was single-nucleus RNA-sequencing from the 10x protocol, which 
includes tissue from eight donors and five brain regions58. The nine cell 
types considered in the deconvolution of the tissue were astrocytes, 
endothelial cells, microglia, mural cells, oligodendrocytes, oligoden-
drocyte progenitor cells, T cells, excitatory neurons and inhibitory 
neurons. Marker genes were selected by first filtering for genes com-
mon between the bulk data and the reference data and calculating the 
ratio of the mean expression of each gene in the target cell type over the 
highest mean expression of that gene in a non-target cell type. The 25 
genes with the highest ratios for each cell type were selected as markers.

Confounder analysis and covariate selection
We selected covariates based on previous BrainSeq publications7,8. 
These studies used qSVA as covariates to account for many observ-
able measurements, including flow cell batch effect (Supplementary 
Fig. 27) and RNA quality metrics55. We have found that the inclusion 
of qSVs allows for the omission of other potential confounders as 
covariates for gene expression. To analyze our selected covariates’ 
ability to correct for potential confounders, we correlated potential 
confounders associated with RNA quality (that is, GC content, over-
represented sequences, mitochondria mapping rate and alignment 
rate) and population structure (SNP PCs) and observed covariates 
(sex, self-reported race, age and antipsychotic status at time of death 
(New_Dx)) with gene expression before and after adjusting for selected 
covariates (Eq. 1 and Supplementary Fig. 28) including qSVs. For gene 
expression, we reduced dimensionality by PCA on log2 (counts per 
million)-normalized expression and residualized expression (Eq. 1).

E(Y) = β0 + β1Age + β2Sex + β3MitoRate + β4rRNArate

+β5TotalAssignedGene + β6RIN

+β7ERCCsumlogErr + β8OverallMappingRate

+
3
∑
i=1

ηiSNPPCi +
k
∑
j=1

γjqSVj

(1)

Expression normalization
To normalize expression for each genomic feature, we first filtered out 
low-expressing counts via filterByExpr from the edgeR R/Bioconduc-
tor package59,60. Following filtering, we normalized counts for RNA 
composition using TMM, an edgeR utility. For differential expression 
analysis, we accounted for sample variation by fitting a model across 
each of the genetic features as a function of schizophrenia diagnosis 
adjusting for age, sex, ancestry (SNP PCs 1–3) and RNA quality (RIN, 
mitochondria mapping rate, gene assignment rate, genome mapping 
rate, rRNA mapping rate, ERCC error rate and qSVA55), followed by 
applying the utility voom from the limma R/Bioconductor package61,62.

Expression residualization
We generated residualized data using voom-normalized counts and a 
modified version of the residuals function from limma. To this end, we 
created a null model, Eq. 1, without variable of interest (for example, 
diagnosis), fit the null model using lmFit from limma and regressed out 
covariates using the fitted model coefficients. Following residualiza-
tion, we transformed the data with a z score standardization. All box 
plots used residualized expression.

Identification of cis-eQTLs
We performed cis-eQTL mapping for all samples aged >13 using 
FastQTL63 as previously described16 separated by ancestry and com-
bined with slight modifications. Briefly, we filtered low expression 
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using the GTEx Python script eqtl_prepare_expression.py modified 
to process additional genomic features (for example, transcripts, 
exons and junctions) and retained features with expression estimates 
greater than 0.1 TPM in at least 20% of samples and six or more aligned 
read counts. Next, we normalized counts with TMM from the GTEx 
Python script, rnaseqnorm.py (https://github.com/broadinstitute/
gtex-pipeline/tree/master/qtl/src/rnaseqnorm.py). For genes, exons 
and exon–exon junctions, we generated TPM (Eq. 2) using effective 
length. For junctions, we used a fixed effective length of 100. For genes 
and exons, we used effective length as defined by Eq. 3 with mean insert 
size calculated by Picard tool CollectInsertSizeMetrics (https://broad-
institute.github.io/picard/). Following this, we dropped any features 
with an effective length less than or equal to 1.

TPM = 1 × 106 × Count/Effective Length
∑(Count/Effective Length) (2)

Effective Length = Length − [Mean Insert Size] + 1 (3)

We quantified the effects of unobserved confounding variables 
on expression after adjusting for diagnosis, sex, global popula-
tion stratification (SNP PCs 1–3) and k unobserved confounding 
variables on expression determined via the num.sv function (vfilter 
set to 50,000) from the sva R/Bioconductor package64 and PCA of 
expression for each feature. To identify cis-eQTL, we implemented 
linear regression (Eq. 4) with FastQTL multithreaded Python script 
(run_FastQTL_threaded.py) adjusting for covariates with a mapping 
window within 0.5 megabases (Mb) of the transcription start site of 
each feature, a minor allele frequency ≥ 0.01 and the minor allele 
observed in at least 10 samples. The FastQTL used a two-tailed t-test to 
estimate the nominal P value for each variant–gene pair. Additionally, 
we determined permutation q values for the most highly associated 
variant per gene using empirical P values based on the β-distribution 
fitted to 1,000 to 10,000 adaptive permutations with FastQTL per-
mutation parameters. Following this, the script uses Storey’s q value 
method65 in R to correct empirical P values for multiple testing across 
features. We used the Python script annotate_outputs.py to identify 
the list of all significant variant–gene pairs associated with each fea-
ture. With this, variants with a nominal P value below the feature-level 
threshold were considered significant and were included in the final 
list of variant–gene pairs.

E(Y) = β0 + β1Diagnosis + β2Sex +
5
∑
i=1

ηiSNPPCi +
k
∑
(j=1)

θjexpressionPCj

(4)

Transancestry eQTL analysis
For transancestry eQTL analysis, we performed meta-analysis with 
mash18 modeling using the nominal eQTL results generated using 
FastQTL (Identification of cis-eQTLs) separately by ancestry. Specifi-
cally, we extracted the strongest variants for each feature (gene, tran-
script, exon and junction) to form the strong set based on nominal P 
values across ancestry. Our unbiased representation of the eQTL results 
was generated by randomly selecting 5% (genes) or 1% (transcripts, 
exons and junctions) from all feature–variant pairs. Using the randomly 
selected feature–variant set, we learned the correlation structure 
between ancestry groups to generate a canonical covariance matrix. 
Our strong set was used to learn the data-driven covariance matrix. 
Both the canonical and data-driven covariance matrices were fitted 
to a mash model with the randomly selected feature–variant pairs to 
learn the mixture weights and scaling per feature. This fitted model 
was then applied to the strong set as well as all feature–variant pairs 
to compute posterior summaries. Significant eQTLs were determined 
if in at least one ancestry lfsr was less than 5%.

In addition to separately computing eQTL by ancestry, we also 
generated eQTL results by combining the ancestry groups to increase 
power of eQTL detection and used global ancestry adjustments based 
on the recommendation of Martin et al., which demonstrated that 
bias is typically small for admixed African American populations 
like our AA individuals66. To verify that this small bias exists for com-
bined ancestry eQTL analysis, we first compared slope coefficients of 
ancestry-separated eQTL analysis and found high pairwise correlation 
(Spearman, ρ > 0.93 and P < 0.01) between combined analysis and AA 
or EA only analysis (Supplementary Fig. 29). This was replicated using 
mash modeling, which assesses and estimates effects between ances-
try (Supplementary Fig. 30a). We found comparable results when we 
expanded this analysis to transcripts, exons and exon–exon junctions 
(Supplementary Fig. 30b–d). We provide the FastQTL nominal and 
permutation results for combined and by ancestry at https://erwin-
paquolalab.libd.org/caudate_eqtl/.

Replication of cis-eQTL
To assess replication of cis-eQTLs, we examined nominal P values for 
matched variant–gene pairs in the GTEx caudate nucleus data16. As 
there are no junction-level cis-eQTL analyses available publicly, we 
downloaded the GTEx v8 whole-genome sequencing variant calls 
(available as a variant call format (VCF) file), exon–exon junction read 
counts, phenotype information and cis-eQTL GTEx covariates includ-
ing the probabilistic estimation of expression residuals factors67. 
From the junction counts, we generated TPM with a fixed effective 
length of 100 as described in Identification of cis-eQTLs. We identified 
cis-eQTL for GTEx caudate junctions as described above (Identification 
of cis-eQTLs). For each gene with a significant eQTL, we selected the 
best variant from the caudate eQTL and extracted the nominal P value 
of this variant in the GTEx caudate nucleus. As a measure of replica-
tion, we calculated the π1 statistic68 from the resulting distribution of 
P values. To account for ancestry differences between the two datasets, 
we calculated the π1 statistic by separating our caudate individuals into 
EA, AA and all individuals.

BrainSeq brain region-specific cis-eQTL
To examine brain region-specific cis-eQTL in the BrainSeq dataset, we 
implemented mash modeling18 similar to Transancestry eQTL analysis. 
As the published cis-eQTL for the BrainSeq DLPFC and hippocam-
pus7 reports only significant cis-eQTL (FDR < 0.01), we first identified 
cis-eQTL using TOPMed-imputed genotypes with FastQTL as described 
above (Identification of cis-eQTLs) after dropping any samples that 
appeared to be swapped between DLPFC and hippocampus. From the 
nominal P values, we selected the strongest variants (strong set) for 
each feature (gene, transcript, exon and exon–exon junction) across 
the three brain regions. For an unbiased representation of the results, 
we randomly selected (random set) 5% of all feature–variant pairs for 
genes and 1% for transcripts, exons and junctions. Next, we learned the 
correlation structure (Uk) to account for overlapping sample donors 
across brain regions with the random set and learned the data-driven 
covariance matrix with the strong set. Following covariance and struc-
ture correlation, we fit the mash model to the random set to learn the 
mixture weights and scaling (wl). This model was applied to the strong 
set to compute posterior summaries and all gene–variant pairs.

Examining the effect of antipsychotics on eQTL analysis
To examine the potential effect of antipsychotics on eQTL analysis, 
we generated cis-eQTL as described in Identification of cis-eQTLs 
separately by diagnosis and antipsychotic status at time of death 
(neurotypical individuals, schizophrenia with antipsychotics and 
schizophrenia without antipsychotics detected at time of death). With 
these eQTL results, we performed pairwise Spearman correlation for 
each SNP–gene slope coefficient (effect size) using shared significant 
(permutation, q < 0.05) eQTL (Supplementary Fig. 22a), significant 
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eQTL (permutation, q < 0.05) from combined analysis (Supplementary  
Fig. 22b) and all SNP–gene pairs (Supplementary Fig. 22c).

GTEx DRD2 cis-eQTL analysis replication
For DRD2 eQTL analysis replication, we used GTEx v8 and subset 
for the brain caudate nucleus. The cis-eQTL analysis was performed 
using FastQTL as described above (Identification of cis-eQTL) with 
expression adjusted for GTEx covariates (PCR, platform, sex, SNP PCs 
(1–5) and probabilistic estimation of expression residuals inferred 
covariates). Significant DRD2 eQTLs were determined after adaptive  
permutation q < 0.05.

Schizophrenia GWAS risk SNPs
We downloaded the list of index SNPs and meta-analysis of high-quality 
imputed SNPs determined by the Psychiatric Genomics Consortium 
(CLOZUK + PGC2)3 and PGC3 (ref. 4). From these lists, we converted the 
schizophrenia GWAS SNPs from hg19 to hg38 using pyliftover. Follow-
ing conversion, we merged our SNPs with the schizophrenia GWAS SNPs 
on hg38 coordinates and matched alleles for each summary statistic.

Fine mapping and colocalization
To perform colocalization analysis, we first implemented eQTL fine 
mapping by ancestry. To this end, we estimated priors from the 
FastQTL nominal results with torus69. Following estimation of priors, 
we implemented DAP-G70,71 to generate posterior inclusion probabilities 
that provide an estimate of the probability of a variant being causal 
for downstream colocalization with fastENLOC72,73. We applied fas-
tENLOC with the schizophrenia GWAS (PGC2 + CLOZUK3 and PGC3  
(ref. 4)) significant (P < 5 × 10–8) loci. Fine mapping results from DAP-G 
are provided at https://erwinpaquolalab.libd.org/caudate_eqtl/.

TWAS analysis
For TWAS analysis, we first adapted the LD reference files provided by 
the FUSION TWAS software23 and the GWAS summary statistics SNPs 
from PGC2 and the Walters Group Data Repository3 and PGC3 (ref. 4) 
from hg19 to hg38 using the port_to_hg38.R script (https://github.com/
LieberInstitute/brainseq_phase2/tree/master/twas). This script was 
modified to perform LD and summary statistics conversion separately. 
Following conversion, we computed feature weights using the example 
script provided by the FUSION TWAS software modified to run in parallel 
with our data and FUSION.compute_weights.R (FUSION TWAS software; 
gemma v0.98.1) with slight modifications to run with multiple threads 
and gcta v1.92beta. Summary information for the feature weights were 
generated using FUSION.profile_wgt.R (FUSION TWAS software), and a 
Python script was used to extract weight positions for downstream analy-
sis. After computing functional weights, we applied FUSION.assoc_test.R 
to generate TWAS associations and calculate functional GWAS associa-
tions. The TWAS P values were adjusted for multiple testing using the 
Benjamini–Hochberg and Bonferroni procedures implemented in the 
statsmodels Python package. Feature weights for the caudate nucleus 
are provided at https://erwinpaquolalab.libd.org/caudate_eqtl/.

SMR analysis
For SMR analysis, we selected top eQTLs with nominal P values <1 × 10–4 
within 0.5 Mb of the transcription start site of each feature and top 
PGC3 GWAS P values <5 × 10–8. For each feature, we implemented SMR 
and HEIDI methods22 to test for pleiotropic associations between 
expression and schizophrenia GWAS and caudate cis-eQTLs with 
default parameters. We adjusted SMR P values for multiple testing using 
the Benjamini–Hochberg method. Significant SMR associations were 
determined if the SMR FDR was <0.05 and the HEIDI P value was >0.01.

Differential expression analysis
After quantifying genes, transcripts, exons and junctions from the 
RNA-sequencing reads, we performed differential expression analysis 

using limma-voom. We used the eBayes function from limma to identify 
differentially expressed features from voom-normalized counts. We 
adjusted for age, sex, ancestry (first three genotype PCs) and several 
RNA-sequencing sample quality measures, including fraction of reads 
mapping to the genome, fraction of reads mapping to mitochondria, 
fraction of reads mapping to rRNA, fraction of reads assigned to genes, 
RIN, total ERCC deviation from expected counts and top 12 qSVs (to 
account for RNA degradation55) using the model described in Eq. 5. The 
number of qSVs, K = 12 for the caudate dataset, was calculated using 
the BE algorithm56 implemented in the SVA Bioconductor package. We 
found that the qSVs obtained using the qSVA methodology55 reduced 
spurious correlations of observed and unobserved measurements as 
previously reported55 (Supplementary Fig. 27). In addition to account-
ing for these confounders, we found that qSVs also showed significant 
correlation (linear regression, Bonferroni adjusted P value < 0.05) with 
cell-type proportions from a cell decomposition analysis based on a 
pan-brain single-cell reference including nucleus accumbens (Sup-
plementary Fig. 28). As such, our model also corrected for cell-type 
proportion differences.

For comparison with the CMC and BrainSeq Phase 2 DLPFC 
and hippocampus datasets, we downloaded open access differen-
tial expression summary results and matched them by gene IDs. For 
antipsychotic differential expression analysis, we recoded diagnosis 
to include information on antipsychotic presence at time of death 
(New_Dx; Supplementary Data 10). We replaced ‘diagnosis’ in Eq. 5 
with this recoded diagnosis (for example, neurotypical individuals, 
no antipsychotic schizophrenia and antipsychotic schizophrenia) and 
extracted differential expression results for neurotypical individuals 
versus individuals with schizophrenia either with or without antipsy-
chotics present at time of death.

E (Y) = β0 + β1Diagnosis + β2Age + β3Sex

+β4MitoRate + β5rRNArate + β6TotalAssignedGene

+β7RIN + β8ERCCsumlogErr + β9OverallMappingRate

+
3
∑
i=1

ηiSNPPCi +
K
∑
j=1

γjqSVj

(5)

Gene term enrichment and pathway analyses
For gene term enrichment analysis, we used the GOATOOLS Python pack-
age74 with the GO database and hypergeometric tests for enrichment and 
depletion following the tutorial with modifications for our data. First, we 
used pybiomart (https://github.com/jrderuiter/pybiomart) to convert 
gencode IDs into Entrez IDs if not present in the differential expression 
annotation. We used download_go_basic_obo and download_ncbi_asso-
ciations functions from GOATOOLS to download the GO database. For 
directional enrichment, we separated upregulated and downregulated 
DEGs using the t-statistic (upregulated in schizophrenia, t > 0; down-
regulated in schizophrenia, t < 0). Multiple testing correction was done 
using the Benjamini–Hochberg FDR method (P < 0.05). In addition to 
gene term enrichment analysis, we also conducted pathway analysis for 
differential expression results using pathview75, an R/Bioconductor pack-
age. Parameters for all functions can be found within the corresponding 
jupyter notebooks (Data and code availability).

CMC and genotype–tissue expression replication
For CommonMind DE and eQTL replication, we downloaded differen-
tial expression and eQTL results from Synapse (https://www.synapse.
org/), syn6183936 and syn4622659. For eQTL replication, we used cau-
date nucleus from GTEx v8, which is supported by the Common Fund of 
the Office of the Director of the NIH and by NCI, NHGRI, NHLBI, NIDA, 
NIMH and NINDS. We obtained eQTL data from the GTEx Portal (https://
gtexportal.org/home/datasets). For variant–gene comparisons of 
eQTLs, we matched converted SNP IDs across datasets.
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Inferring gene coexpression networks with a variation 
autoencoder
GNVAE (https://github.com/apuapaquola/GNVAE) is a manifold 
learning-based method that uses a disentangling variational autoen-
coder76,77 to obtain a compressed representation of each gene’s expres-
sion pattern into a low-dimension vector of latent variables. By using 
learned representations of expression patterns to build a gene network, 
GNVAE focuses on expression modes that are recurrent among genes 
and tends to capture meaningful biological themes. Autoencoders are 
neural networks that are trained to reconstruct their inputs at the out-
put layer. By using a low-dimensional bottleneck layer, autoencoders 
learn a compressed, non-linear representation of the data that usually 
captures meaningful properties of the data. Disentangling variational 
autoencoders have a loss function that encourages the latent variables 
to be statistically independent of each other. In our approach, we 
trained the autoencoder considering each gene as a training example 
and its expression values across individuals as features. After training 
the autoencoder, GNVAE uses the learned representation vectors 
to compute distances between all pairs of genes, forming a distance 
matrix. At this point, we can use the distance matrix directly to identify 
neighbors of genes of interest in the representation space. Alterna-
tively, we can identify modules of genes with similar representation. 
GNVAE computes a neighborhood graph from the distance matrix and 
applies the Leiden clustering algorithm78 to identify gene modules.

We adapted the disentangling autoencoder code from https://
github.com/YannDubs/disentangling-vae, which was originally 
designed for image datasets, to tabular form (for gene expression 
data) by replacing the convolutional layers with fully connected layers. 
We used a neural network architecture with 393, 128, 8, 128 and 393 
neurons in each layer, respectively, with dimension 8 in the bottleneck 
layer. We used the caudate nucleus gene expression matrix expressed 
in log2 (RPKM). For autoencoder training, we considered each gene 
as a training example in which the features are the expression values 
across individuals. We performed tenfold cross-validation to verify that 
reconstruction error in the training set and in the test set have similar 
values, indicating that there is no overfitting (Supplementary Fig. 31). 
We then retrained the autoencoder with the full dataset and applied it 
to each gene to obtain their representation vectors.

We computed a similarity matrix based on the Euclidean distance 
between the representations of genes, using as similarity score the 
inverse of squared Euclidean distance. Using the similarity scores, 
we computed the k neighborhood graph (with k = 8) and applied the 
Leiden clustering algorithm to identify modules. For each module, 
we performed GO enrichment analysis with the GOATOOLS Python 
package using hypergeometric tests. We use the enriched GO terms 
(FDR < 0.05) to generate word clouds using the wordcloud Python 
package (https://github.com/amueller/word_cloud) using font size 
proportional to –log (P value).

WGCNA analysis
To compare GNVAE with traditional network analysis, we performed 
signed network WGCNA analysis using the caudate nucleus gene 
expression matrix expressed in log2 (counts per million) to generate the 
coexpression network with neurotypical and schizophrenia samples. 
Outlier samples were determined using z score normalization. After 
filtering for sample and gene outliers, the coexpression network was 
made using bicor correlation type with 344 samples and 22,961 genes. 
The scale-free topology and connectivity were evaluated as shown in 
Supplementary Fig. 32.

Graphics
We generated Venn diagrams using the Python venn package for 
unweighted overlaps and the matplotlib-venn package for weighted 
three tissue overlaps. Upset plots were generated using the Complex-
Heatmap79 package in R. We generated expression box plots and scatter 

plots in R with ggpubr. For t-SNE clustering plots, we used plotnine, a 
Python implementation of ggplot2 (ref. 80). Heat maps were generated 
in Python with seaborn81 or R with ggplot2. For circos plots, we used 
circlize82 and ComplexHeatmap in R.

Additional resources
Similar to the BrainSeq Phase II release7, we created an eQTL browser 
available at https://erwinpaquolalab.libd.org/caudate_eqtl/ that ena-
bles exploring the eQTL variant–feature pairs for caudate nucleus and 
brain region-dependent results comparing the caudate with DLPFC 
and hippocampus.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Processed data (Supplementary Data 1–13 and additional data files) 
and accession codes to raw RNA-Seq FASTQ files and genotypes used 
in this study are available from https://erwinpaquolalab.libd.org/cau-
date_eqtl/. Additional data files include Brainseq_caudate_4features_
mash_associations.tar.gz (full set of transancestry caudate eQTL mash 
model results) and Brainseq_LIBD_brainregions_allpairs_genes.txt.gz 
(full set of brain region interaction eQTL mash model results).

Code availability
Code and jupyter notebooks are available through GitHub at https://
github.com/LieberInstitute/BrainSeqPhase3Caudate.
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(3.46.0) and edgeR: (3.32.1) for differential expression analysis (see jupyter notebook for full environment list in GitHub), DAP-G (1.0.0) for 

fine mapping, fastENLOC (2.0) for colocalization analysis, FUSION TWAS (downloaded from github in 2019) for TWAS analysis using gemma 

(0.98.4) and gcta64 (1.92.2beta), SMR+HEIDI (1.03) for SMR analysis, GOATOOLS (1.0.15) for Gene Ontology term enrichment, GNVAE 

(pytorch version 1.10.0) and WGCNA (1.70-3, R version 4.1) for network analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Raw fastq files will be available upon publication on NCBI SRA under project ID PRJNA874683. 
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Genotypes are available in dbGaP. 

 

Processed data items below are available from http://erwinpaquolalab.libd.org/caudate_eqtl/ : 

* Quality control metrics 

* Trans-ancestry caudate eQTL calls for genes, transcripts, exons and exon-exon junctions 

* Brain region interation eQTL calls 

* eQTL-GWAS colocalization analysis results 

* TWAS analysis results 

* SMR analysis results 

* Differential expression analysis results  

* Gene network analysis results for GNVAE and WGCNA 

* Demographic information of sample donors 

 

GWAS summary statistics are available here: 

PGC3: https://figshare.com/articles/dataset/scz2022/19426775 

PGC2+clozuk: https://walters.psycm.cf.ac.uk/clozuk_pgc2.meta.sumstats.txt.gz 

 

GRCh38 human genome reference genome: 

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_25/GRCh38.p7.genome.fa.gz 

 

GENCODE release 25 annotation: 

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_25/gencode.v25.basic.annotation.gtf.gz

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size eQTL analysis: n=443 (age > 13). 

Differential Expression, TWAS and GNVAE: n=393 (age > 17 and primary diagnosis of schizophrenia or neurotypical controls). 

The sample size was determined by brain tissue available and funds available for sequencing. Previous eQTL analysis by GTEx suggest this 

sample size is well-powered for eQTL analysis. Previous studies by the Lieber Institute for Brain Development (PMID 31174959 and 30050107) 

with similar sample sizes suggest this sample size is well-powered for case-control differential expression analysis.

Data exclusions We excluded samples from individuals with age <= 13 and samples that didn't pass RNA-Seq QC  (see methods for details).

Replication We compared our results with other published studies (see methods and results for more details). For eQTL, we used the pi1 statistic to 

compare our caudate eQTL calls with GTEx v8 caudate eQTLs. For DRD2 transcripts and junctions, we directly compared TWAS and SMR 

results in our data with TWAS and SMR results on GTEx v8 caudate data. For case-control differential expression, we used Fisher's exact test 

to compare DE genes with SCZD/control DE genes in the dorsolateral prefrontal cortex dataset from the CommonMind consortium. All 

replication attempts were successful.

Randomization This is an observational study from postmortem human brain tissue and thus subjects were not randomized into outcome groups.

Blinding Investigators were not blinded to group allocation since the study is observational.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics These 443 samples were obtained from postmortem donors, which are not considered human research participants. 

However, demographic information of these donors is in Table S1 . Briefly, the covariate-relevant population characteristics 

are sex (142 females, 301 males), ancestry (210 African ancestry, 233 European Ancestry), diagnosis (245 neurotypical 

controls, 154 patients with schizophrenia, 44 patient with bipolar disorder), antipsychotic drugs detected in toxicology (294 

individuals with no antipsychotics detected, 104 individuals with antipsychotics detected), age (mean 48.5, std 15.8).

Recruitment Human postmortem brain tissues was collected at several sites for this study. More details in the section "Human 

postmortem brain tissue acquisition" in material and methods.

Ethics oversight Human postmortem brain tissue was collected at several sites for this study. A large number of samples were obtained at the 

Clinical Brain Disorders Branch (CBDB) at National Institute of Mental Health (NIMH) from the Northern Virginia and District 

of Columbia Medical Examiners’ Office, according to NIH Institutional Review Board guidelines (Protocol #90-M-0142). These 

samples were transferred to the Lieber Institute for Brain Development (LIBD) under an MTA with the NIMH. Additional 

samples were collected at the LIBD according to a protocol approved by the Institutional Review Board of the State of 

Maryland Department of Health and Mental Hygiene (#12-24) and the Western Institutional Review Board (#20111080). 

Audiotaped informed consent to study brain tissue was obtained from the legal next-of-kin on every case collected at NIMH 

and LIBD. Details of the donation process and specimen handling are described previously. After next-of-kin provided 

audiotaped informed consent to brain donation, a standardized 36-item telephone screening interview was conducted, (the 

Lieber Institute for Brain Development Autopsy Questionnaire), to gather additional demographic, clinical, psychiatric history, 

substance abuse history, treatment, medical, and social history. A psychiatric narrative summary was written for every donor, 

to include data from multiple sources, including the Autopsy Questionnaire, medical examiner documents (investigative 

reports, autopsy reports, and toxicology testing), macroscopic and microscopic neuropathological examinations of the brain, 

as well as extensive psychiatric, detoxification, and medical record reviews, and/or supplemental family informant interviews 

using the MINI (Mini International Neuropsychiatric Interview). Two board-certified psychiatrists independently reviewed 

every case to arrive at DSM-5 lifetime psychiatric and substance use disorder diagnoses, including [schizophrenia and bipolar 

disorder, as well as substance abuse disorders], and if for any reason agreement was not reached between the two 

reviewers, a third board-certified psychiatrist was consulted.  

All donors were free from significant neuropathology, including cerebrovascular accidents and neurodegenerative diseases. 

Each subject was diagnosed retrospectively by two board-certified psychiatrists, according to the criteria in the DSM-IV. Brain 

specimens from the CBDB were transferred from the NIMH to the LIBD under a Material Transfer Agreement. Available 

postmortem samples were selected based on RNA quality (RNA integrity number ≥ 5). 

The toxicological analysis was performed in each case. The non-psychiatric non-neurological controls had no known history of 

significant psychiatric or neurological illnesses, including substance abuse. Positive toxicology was exclusionary for control 

subjects but not for patients with psychiatric disorders.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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