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Abstract 

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, 

including differential symptomatology, drug responsiveness, and male incidence rate. To date, 

only the prefrontal cortex has been studied in large-scale transcriptome analyses for sex 

differences in schizophrenia. Here, we examined the BrainSeq Consortium RNA-sequencing and 

genotypes for the caudate nucleus (n=399), dorsolateral prefrontal cortex (DLPFC; n=377), and 

hippocampus (n=394) to characterize sex differences in schizophrenia. We identified genomic 

features (genes, transcripts, exons, and exon-exon junctions) associated with sex, sex-specific 

expression in schizophrenia, and sex-interacting expression quantitative trait loci (si-eQTL) 

associated with schizophrenia risk. We found 831 unique genes that exhibit sex differences 

across brain regions, enriched for immune-related pathways. X-chromosome dosage was 

significantly decreased in the hippocampus of male individuals with schizophrenia. Our sex 

interaction model revealed 148 junctions dysregulated for schizophrenia in a sex-specific 

manner. Sex-specific schizophrenia analysis identified dozens of expressed, sex-specific features 

also with enrichment in immune-related pathways. Finally, our si-eQTL analysis revealed 704 

unique genes, nine of which are associated with schizophrenia risk. Overall, our results increased 

the number of annotated sex-biased features, identified sex-specific schizophrenia genes, and 

provided the first annotation of si-eQTL in the human DLPFC and hippocampus. Altogether, 

these results point to the importance of sex-informed analysis of sexually dimorphic traits, 

inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased 

female samples for schizophrenia analyses. 
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Introduction 

For more than a century, sex differences have been observed in schizophrenia – a complex, 

chronic neuropsychiatric disorder affecting approximately 1% of the adult population worldwide. 

These sex differences include differences in cognitive severity and age of onset; for example, 

female individuals appearing to be less vulnerable to altered verbal processing deficits1, and male 

individuals having an earlier age of disease onset2,3. Additionally, prenatal stress may 

significantly increase the risk of schizophrenia in male offspring as opposed to female 

offspring4,5. To date, only two large-scale RNA-sequencing studies have examined sex 

differences in schizophrenia, and both focus exclusively on one brain region – the prefrontal 

cortex6,7. Furthermore, the GTEx (Genotype-Tissue Expression) analysis of sex differences 

across 45 tissues found fewer than 100 differentially expressed genes (DEGs) in 13 of 14 brain 

regions. This small number of identified DEGs might be attributed to relatively limited sample 

size (114 to 209 individuals)8.  

Leveraging schizophrenia genome-wide association studies (GWAS)9–11, recent large-scale 

studies have used statistical association between genotype and expression (expression 

quantitative trait loci [eQTL]) to identify genomic features (gene, transcript, exon, and exon-

exon junctions) underlying schizophrenia risk12–16. However, these studies have not explored 

potential sex-interacting eQTL (si-eQTL). Furthermore, the GTEx study across 44 tissues found 

only four si-eQTL genes with a nominally significant false discovery rate (FDR) below 0.25 in 

only two of the 13 brain regions examined8. Other recent si-eQTL studies involving whole 

blood17,18 and lymphoblastoid cell lines19 have found fewer than 25 si-eQTL. As eQTL have 

tissue specificity20, the field of neuropsychiatric genetics needs a sizable and comprehensive 

analysis of si-eQTL in the human brain. 

Here, we leverage the BrainSeq Consortium RNA-sequencing and genotypes datasets to identify 

genes associated with sex, with sex-specific expression in schizophrenia, and with sex-

interacting eQTL using a total of 1,170 samples across 504 individuals (Table 1) for the caudate 

nucleus (n=399), dorsolateral prefrontal cortex (DLPFC; n=377), and hippocampus (n=394). Our 

work increases the number of annotated sex-biased features, examines sex-chromosome dosage, 

identifies sex-specific schizophrenia features, provides the first annotation of si-eQTL in the 

human DLPFC and hippocampus, and increases si-eQTL annotations for the caudate nucleus. 

Altogether, these results provide novel insights into sex differences, highlighting the importance 

of sex-informed analysis of sexually dimorphic traits and informing personalized therapeutic 

strategies in schizophrenia.  

Table 1. A sample breakdown of eQTL analysis for individuals (age > 13) postmortem 

caudate nucleus, DLPFC, and hippocampus from the BrainSeq Consortium, separated by 

sex. Abbreviations: Female (F), Male (M), Neurotypical Control (CTL), Schizophrenia (SZ), 

African American (AA), European American (EA), RNA integrity number (RIN). 

 

https://sciwheel.com/work/citation?ids=8988061&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=839392,8988062&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2985053,9177615&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10915314,2380179&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9635833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=111612,4904160,12782344&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=13868679,7037810,2227080,5593206,6144412&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=9635833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4121052,2040215&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8988059&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4345863&pre=&suf=&sa=0


 

3 

Brain Region Sex 
Sample 

Size 
Diagnosis Ancestry 

Age 

(mean ± sd) 

RIN 

(mean ± sd) 

Caudate 

Nucleus 

F 126 76CTL/50SZ 79AA/47EA 50.2 ± 16.9 7.8 ± 0.9 

M 273 169CTL/104SZ 127AA/146EA 48.6 ± 15.7 7.9 ± 0.8 

DLPFC 

F 121 73CTL/48SZ 75AA/46EA 48.4 ± 17.1 7.4 ± 1.0 

M 256 156CTL/100SZ 129AA/127EA 44.6 ± 16.1 7.8 ± 0.9 

Hippocampus 

F 126 79CTL/47SZ 82AA/44EA 47.9 ± 16.7 7.64± 1.1 

M 268 182CTL/86SZ 131AA/137EA 44.4 ± 16.2 7.7 ± 1.0 
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Materials and Methods 

The research described herein complies with all relevant ethical regulations. All specimens used 

in this study were obtained with informed consent from the next of kin under protocols No. 12-

24 from the Department of Health and Mental Hygiene for the Office of the Chief Medical 

Examiner for the State of Maryland and No. 20111080 for the Western Institutional Review 

Board for the Offices of: 1) the Chief Medical Examiner for Kalamazoo Michigan, 2) University 

of North Dakota in Grand Forks North Dakota, and 3) Santa Clara County California. Details of 

case selection, curation, diagnosis, and anatomical localization and dissection can be found in 

previous publications from our research group12,13. 

BrainSeq Consortium RNA-sequencing data processing 

We surveyed data from the BrainSeq Consortium12,13 for caudate nucleus, DLPFC, and 

hippocampus, specifically: phenotype information, FASTQ files, region-specific covariates, and 

single nucleotide polymorphism (SNP) array genotypes.  

We re-mapped RNA-sequencing reads to the hg38/GRCh38 human reference genome 

(GENCODE release 41, GRCh38.p13) with the splice-aware aligner HISAT221 (version 2.2.1). 

Following alignment, we collected quality control and alignment metrics for each sample using 

RNA-SeQC22 (version 2.4.2). 

We performed quantification of major genomic features (genes, transcripts, exons, and exon-

exon junctions) for each sample separately, as follows: 

● We generated gene and exon read counts using featureCounts23 (version 2.0.3) with 

default parameters for paired-end, reverse-stranded read counting. 

● We estimated transcript expression (i.e., counts and transcripts per million [TPM]) with 

kallisto24 (version 0.46.2) with default parameters for reverse-stranded reads. 

● We extracted exon-exon junction coverage data for all spliced alignments found in the 

alignment files produced by HISAT2 using RegTools25 (version 0.5.3). Using this 

reference-free method, we were able to include novel splicing patterns detected from the 

aligned files. 

Following this quality control and quantitation, we packaged these data (i.e., counts, gene 

annotation, and quality control metrics) into RangedSummarizedExperiment R objects26 using R 

code adapted from the SPEAQeasy RNA-seq processing pipeline27. 

BrainSeq Consortium imputation and genotype processing 

We imputed genotypes as previously described12. Briefly, we first converted genotype positions 

from hg19 to hg38 with liftOver28. The Trans-Omics for Precision Medicine (TOPMed) 

imputation server29–31 was used for imputation of genotypes filtered for high quality (removing 

https://sciwheel.com/work/citation?ids=13868679,7037810&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13868679,7037810&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7266361&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11844593&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=148598&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1345325&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14580692&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14541262&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10988515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=69929&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2094306,10461553,1686629&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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low-quality and rare variants) using the genotype data phased with the Haplotype Reference 

Consortium (HRC) reference panels 

(https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html). Genotypes were phased per 

chromosome using Eagle32 (version 2.4). We performed quality control with the McCarthy Tools 

(https://www.well.ox.ac.uk/~wrayner/tools/HRC-1000G-check-bim-v4.3.0.zip): specifically, we 

removed variants and samples with minor allele frequency (MAF) less than 0.01, missing call 

frequencies greater than 0.1, and Hardy-Weinberg equilibrium below a p-value of 1e-10 using 

PLINK 2.033–35 (version 2.00a3LM). This resulted in 11,474,007 common variants. 

 

For population stratification of samples, we performed multidimensional scaling (MDS) with 

PLINK version 1.933–35 on linkage disequilibrium (LD)-independent variants. The first 

component separated samples by ancestry as reported by the medical examiner’s offices.  

Sample selection 

We selected samples from the caudate nucleus, DLPFC, and hippocampus based on four 

inclusion criteria: 1) used RiboZero RNA-sequencing library preparation, 2) features an age 

greater than 13 years, 3) has a self-reported ethnicity of either African American or White 

American, and 4) has TOPMed imputed genotypes available. This resulted in a total of 1,170 

samples from 504 unique individuals across the three brain regions for eQTL analysis. For 

expression-based analysis, we excluded individuals with age less than 17 years, resulting in a 

total of 1,127 samples from 480 unique individuals across the three brain regions. 

Subject details 

Of all 1,170 samples used in the eQTL portion of this study, 399 were from the caudate nucleus, 

377 from the DLPFC, and 394 from the hippocampus. Out of the 1,170 samples, 126, 121, and 

126 were female and 273, 256, 268 were male from the caudate nucleus, DLPFC, and 

hippocampus, respectively (Table 1). For the 1,127 samples used in the expression analyses of 

this study, 393, 359, and 375 samples were located in the caudate nucleus, DLPFC, and 

hippocampus, respectively (Table 2). More information can be found in Tables 1 and 2. 

Table 2. A sample breakdown of expression analysis for adult (age > 17) postmortem 

caudate nucleus, DLPFC, and hippocampus from the BrainSeq Consortium. Abbreviations: 

Neurotypical Control (CTL), Schizophrenia (SZ), Female (F), Male (M), African American 

(AA), European American (EA), RNA integrity number (RIN). 

Brain Region 
Sample 

Size 
Diagnosis Sex Race 

Age 

(mean ± sd) 

RIN 

(mean ± sd) 

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://sciwheel.com/work/citation?ids=3224851&pre=&suf=&sa=0
https://www.well.ox.ac.uk/~wrayner/tools/HRC-1000G-check-bim-v4.3.0.zip
https://sciwheel.com/work/citation?ids=431749,1158431,10623849&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=431749,1158431,10623849&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Caudate 

Nucleus 
393 239CTL/154SZ 121F/272M 205AA/188EA 49.6 ± 15.6 7.9 ± 0.9 

DLPFC 359 211CTL/148SZ 114F/245M 200AA/159EA 47.4 ± 15.4 7.7 ± 0.9 

Hippocampus 375 242CTL/133SZ 121F/254M 207AA/168EA 47.0 ± 15.3 7.6 ± 1.0 

Match gender phenotype to sex chromosomes 

To match gender phenotype with sex chromosomes, we applied the sex imputation function (--

check-sex) from PLINK. This compares sex assignments in the input dataset with those imputed 

from X-chromosome inbreeding coefficients. We used a Jupyter Notebook (version 6.0.2) with 

the R kernel to compare reported gender with genotype-imputed sex (F estimates). Here, we 

found all gender phenotypes matched sex chromosomes with F estimates for females below 0.22 

and males above 0.9 (Fig. S1). 

Quality control and covariate exploration for sex 

Observed expression measurements can be affected by biological and technical factors. To 

evaluate potential confounders for expression or sex, we first correlated technical and RNA 

quality variables (i.e., RIN, mitochondria mapping rate, overall mapping rate, total gene 

assignment, mean 3’ bias, etc.) and removed highly correlated variables (Pearson, r > 0.95; 

Fig. S2) present in at least one brain region. To examine potential confounders, we next 

correlated these remaining variables and biological variables (i.e., diagnosis, age at death, global 

genetic similarity, status of antipsychotics at time of death,  etc.) with gene expression as a 

function of sex (Fig. S3A). For model covariates, we used variables that had a significant 

correlation (Bonferroni corrected p-value < 0.05) with gene expression for either sex in at least 

one brain region. To account for possible hidden effects on gene expression not captured by the 

above covariates, we also applied surrogate variable analysis36,37. When we regressed out 

biological, technical, and hidden effects, we found this reduced all spurious correlations 

(Fig. S3B). 

Expression normalization 

For expression normalization, we constructed edgeR38,39 objects in R (version 4.2) for each brain 

region by using raw counts and sample phenotype information. Next, we filtered out low 

expression counts using filterByExpr from edgeR (version 3.40.2), which keeps features above a 

minimum of 10 count-per-million (CPM) in 70% of the smallest group sample size (i.e., female 

individuals). Following this, we normalized library size using trimmed mean of M-values 

(TMM) before applying voom normalization40 using limma41 (version 3.54.1) on four different 

https://sciwheel.com/work/citation?ids=482167,831529&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=673952,802156&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=148638&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=148089&pre=&suf=&sa=0
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linear models that examine: 1) sex (Equation 1), 2) interaction of brain region and sex 

(Equation 2), 3) interaction of sex and diagnosis (Equation 3), and 4) diagnosis subset by sex 

(Equation 4). Example covariates for these linear models are diagnosis, age, brain region, 

genetic similarity (SNP PCs [principle components] 1-3), RNA quality (RIN, mitochondria 

mapping rate, gene assignment rate, genome mapping rate, rRNA mapping rate, and mean 3’ 

bias). For sex, interaction of sex and diagnosis, and diagnosis by sex analyses, we also corrected 

for any hidden variance via surrogate variable analysis. 

 

Equation 1 

 
Equation 2 

 
Equation 3 

 
Equation 4 

As there was significant overlap of individuals among the three brain regions examined, we used 

dream (differential expression for repeated measures) from variancePartition42 (version 1.28.7) 

to correct for the random effect of duplicate individuals across brain regions to assess potential 

significant interactions between brain region and sex (Equation 2). As such, we applied voom 

via dream framework with voomWithDreamWeights. 

https://sciwheel.com/work/citation?ids=9709939&pre=&suf=&sa=0
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Expression residualization  

For residualized expression, we used voom-normalized expression and null models to regress out 

covariates as previously described12. After regressing out covariates, we applied a z-score 

transformation. Null models were created without variable(s) of interest to examine: 1) sex 

(Equation 4), 2) interaction of brain region and sex (Equation 5), 3) interaction of sex and 

diagnosis (Equation 6), and 4) diagnosis (Equation 6).  

 
Equation 5 

 
Equation 6 

Differential expression analysis 

Following voom normalization, we fit four linear models (Equations 1-4) to examine: 1) sex, 2) 

interaction of sex and brain region, 3) interaction of sex and diagnosis, and 4) diagnosis subset 

by sex. With our fitted model, we identified differentially expressed features using the eBayes43 

function from limma. Dream enabled us, in one step, to complete linear model fitting and 

differential expression calculation for interaction of sex and brain region. 

Weighted correlation network analysis (WGCNA) analysis 

We performed a signed network WGCNA44 (version 1.72) analysis using residualized expression 

(Equation 4) to generate the co-expression network using all genes in a single block by brain 

region. First, we filtered genes and outlier individuals with the WGCNA function 

goodSamplesGenes. To remove any outlier individuals whose expression substantially deviated 

from the norm, we also filtered individuals with Z-normalized expression greater than 2.5. After 

evaluating power and network connectivity for each brain region, we selected a soft-thresholding 

power of eight for network constructions. We constructed networks using bicor correlation and 

set deepSplit to two for the caudate nucleus and hippocampus and three for the DLPFC. 

Additionally, we set mergeCutHeight to 0.15 and minModuleSize set to 50 for all brain regions 

and gene networks. We made the co-expression networks using Pearson correlation values with 

381, 349, 364 samples and 23,488, 23,039, and 22,990 genes for the caudate nucleus, DLPFC, 

https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=33271&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=486535&pre=&suf=&sa=0
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and hippocampus, respectively. Significant associations with sex were determined using a linear 

model and Pearson correlation between binary sex and module eigengenes.  

For module preservation analysis45 between sex (female versus male), we constructed networks 

across brain regions for all samples, control-only samples, schizophrenia-only samples using the 

following parameters: 1) soft-thresholding power of 15 and 2) nPermutations set to 100. Similar 

to our signed network construction, we first filtered genes and outlier individuals with 

goodSamplesGenes. As the DLPFC failed to achieve a scale free topology across networks (i.e., 

all samples, control-only samples, or schizophrenia-only samples), we also removed outlier 

individuals after visual inspection of the sample dendrogram generated with flashClust (Fig. S5). 

This resulted in the removal of one female neurotypical control (17 years; DLPFC) individual 

and two individuals with schizophrenia: one female (80 years; DLPFC) and one male (66 years; 

DLPFC). For each brain region, we used the male-generated networks as the reference group. 

For the neurotypical control analysis, we generated networks with 240 (71 female; 169 male), 

210 (66 female; 146 male), and 243 (74 female; 169 male) individuals for the caudate nucleus, 

DLPFC, and hippocampus, respectively. For the schizophrenia analysis, we generated networks 

with 153 (50 female; 103 male), 146 (48 female; 98 male), and 132 (47 female; 85 male) 

individuals for the caudate nucleus, DLPFC, and hippocampus, respectively. For the combined 

analysis (control and schizophrenia), we generated networks with 393 (121 female; 272 male), 

356 (112 female; 244 male), and 375 (121 female; 254 male) individuals for the caudate nucleus, 

DLPFC, and hippocampus, respectively. We generated all networks with a total of 26,881, 

26,627 and 26,727 genes for the caudate nucleus, DLPFC, and hippocampus, respectively. We 

considered a module to not be preserved if the Z-summary score was less than or equal to ten. 

Random forest dynamic recursive feature elimination 

For autosomal sex prediction, we used dRFEtools46 (version 0.1.17) in Python (version 3.7) to 

apply dynamic recursive feature elimination with random forest classification47. We set the 

elimination rate to 10% and set 0.30 as the fraction of samples used for lowess smoothing. To 

reduce overfitting, we generated 10 sex-stratified folds for cross-validation with the 

StratifedKFold function from scikit-learn48. Model performance was measured using normalized 

mutual information, accuracy, and area under the receiver operating characteristic (ROC) curve 

with out-of-bag samples. 

Multi-marker analysis of genomic annotation (MAGMA) enrichment analysis 

For gene set enrichment analysis comparisons of DEGs and multiple GWAS summary statistics, 

we applied MAGMA49 (version 1.10) on GWAS SNP p-values with European reference data 

downloaded from MAGMA (https://ctg.cncr.nl/software/magma). As the GWAS summary 

statistics were on hg19, we mapped our DEG gene locations from hg38 to hg19 using the 

GENCODE v41 GRCh37 lifted annotation file. Initially, we generated a SNP annotation file 

with the annotate flag (--annotate). Following this, we performed gene analysis on SNP p-values 

https://sciwheel.com/work/citation?ids=790982&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15379808&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7394692&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10422333&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1234481&pre=&suf=&sa=0
https://ctg.cncr.nl/software/magma
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using this SNP-level gene annotation file with the following: 1) PLINK input files (--bfile), 2) 

gene model set to SNP-wise mean, and 3) expanded gene boundaries (35 kb upstream and 10 kb 

downstream). We used default settings for all other parameters. Once completed, we performed 

gene-set enrichment analysis in MAGMA (--gene-results) using default parameters. We 

analyzed sex-specific DEGs by direction of effect (upregulated in females or males) across the 

caudate nucleus, DLPFC, and hippocampus with 12 traits (seven neuropsychiatric; Table S1). 

We executed this MAGMA pipeline using snakemake50 (version 6.4.1). 

X-chromosome inactivation (XCI) enrichment analysis 

For XCI enrichment analysis, we downloaded the XCI status annotation from Tukiainen et al.51. 

We accessed the enrichment of sex bias for XCI status using Fisher’s exact test with the known 

XCI categories, including 631 genes defined as escape (n=99), variable escape (n=101), or 

inactive (n=431). We corrected for multiple testing with the Bonferroni procedure.  

Dosage compensation 

Relative X expression (RXE) was determined as previously described52 with slight 

modifications; specifically, we used transcripts per million (TPM). We generated TPM using the 

mean of the read insert size for effective length (Equation 7). We extracted the average fragment 

length as estimated by kallisto per brain region. We dropped any genes with effective lengths 

less than or equal to one. Following TPM calculation, we performed a log2 transformation 

(Equation 8). Next, we filtered low-expressing genes present in at least 20% of samples. To 

compute RXE, we calculated the differences in the mean chromosome-wide log2 TPM 

expression with X-chromosome log2 TPM expression (Equation 9). 

 

Equation 7 

 

Equation 8 

𝑅𝑋𝐸 =  𝑙𝑜𝑔2(𝑚𝑒𝑎𝑛 𝑇𝑃𝑀 𝑜𝑓 𝑋‐ 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑔𝑒𝑛𝑒𝑠)  

−  𝑙𝑜𝑔2 (𝑚𝑒𝑎𝑛 𝑇𝑃𝑀 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑢𝑡𝑜𝑠𝑜𝑚𝑎𝑙 𝑔𝑒𝑛𝑒𝑠) 

Equation 9 

Sex-specific differential expression analysis for schizophrenia 

To determine more stringent sex-specific differential expression features among the three brain 

regions using diagnosis subset by sex, we applied additional selection criteria following 

differential expression analysis. First, we removed any overlapping differentially expressed 

https://sciwheel.com/work/citation?ids=10318268&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4345538&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6859217&pre=&suf=&sa=0
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features. Following removal, we tested features for significant differences in residualized 

expression (Equation 6) for the opposite sex using Mann-Whitney U and removed significant 

features (p-value < 0.05).  

Subsampling male-only schizophrenia differential expression 

For subsampling of the BrainSeq Consortium brain region analysis, we randomly sampled male 

individuals using the female sample sizes (121, 114, and 121 for the caudate nucleus, DLPFC, 

and hippocampus, respectively) and performed differential expression analysis (Equation 6) for 

schizophrenia. We performed this 1,000 times. 

Functional gene term enrichment analysis 

We determined significant enrichment for gene sets using the gene set enrichment analysis 

(GSEA)53,54. Specifically, we performed GSEA with gseGO (gene ontology [GO] gene set 

database) from the clusterProfiler package55 (version 4.6.2) and gseDGN (DisGeNET gene set 

database56) from the DOSE package57 (version 3.24.2). We defined the gene set “universe” as all 

unique genes tested for differential expression. For gseGO, we set minimal gene set size 

(minGSSize) to 10, maximum gene set size (maxGSSize) to 500, and p-value cutoff to 0.05. For 

gseDGN, we set minGSSize to five and p-value cutoff to 0.05. We used the default settings for all 

other parameters.  

For gene-term enrichment analysis for WGCNA modules, we used GOATOOLS Python 

package58 (version 1.2.3) with the GO database and hypergeometric tests for enrichment and 

depletion as previously described12. Specifically, we converted GENCODE IDs to entrez IDs 

using pybiomart (https://github.com/jrderuiter/pybiomart; version 0.2.0). With entrez IDs, we 

applied enrichment analysis for each module. We performed multiple testing corrections using 

the Benjamini-Hochberg FDR method. 

To measure GO term elements semantic similarity across brain regions, we used R package 

GOSemSim59 (version 2.24.0) with the Wang method60 and best-match average strategy. 

Sex interacting eQTL analysis in cis and region specificity 

To identify sex-interacting cis-eQTL (si-eQTL) across the caudate nucleus, DLPFC, and 

hippocampus, we first separated out female and male individuals and, using PLINK 2.0, 

excluded variants with MAF less than 0.05 and variants with less than one allele by sex. To 

generate a common list, we overlapped these filtered variants, resulting in a total of 6,816,103 

SNPs. Following SNP filtering, we performed eQTL analysis using tensorQTL61,62 (version 

1.0.7) for a sex-interaction model. We filtered low expression using the GTEx Python script, 

eqtl_prepare_expression.py, with modification for processing transcripts, exons, and junctions. 

This retained features with expression estimates greater than 0.1 TPM in at least 20% of samples 

https://sciwheel.com/work/citation?ids=55879,49078&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1509330&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=650874&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=896886&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5579571&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://github.com/jrderuiter/pybiomart
https://sciwheel.com/work/citation?ids=1072018&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1283637&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1194368,8166408&pre=&pre=&suf=&suf=&sa=0,0
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and aligned read count of six or more per brain region. Following low expression filtering, we 

performed TMM normalization on filtered counts using the GTEx Python script, rnaseqnorm.py 

(https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl/src/rnaseqnorm.py). Following 

normalization, we implemented tensorQTL using an interaction linear regression model. To do 

this, we performed three major steps: 1) we adjusted expression for covariates (i.e., diagnosis, 

population stratification [SNP PCs 1-3], and expression PCs specific to brain region and feature); 

2) selected cis-SNP using a mapping window of 0.5 Mb within the transcriptional start site (TSS) 

of each feature; and 3) filtered SNPs based on an interaction MAF greater than or equal to 0.05 

and the minor allele present in at least 10 samples.  

To assess sharing across brain regions and to increase our power to detect sex-interacting eQTL 

effects, we used multivariate adaptive shrinkage in R (mashr63; version 0.2.57) as previously 

described12. mashr uses an empirical Bayes approach to learn patterns of similarity among 

conditions (e.g., brain regions) and then leverage these prior patterns to improve accuracy of 

effect size estimates. We obtained effect sizes and standard errors for these effect sizes from the 

tensorQTL interaction model results. To account for correlations among measurements across 

brain regions (i.e., overlapping sample donors), we used the estimate_null_correlation_simple 

function to specify a correlation structure prior to fitting the mash model. The mash model 

included both the canonical covariance matrices and data-driven covariance matrices learned 

from our data. We defined the data-driven covariance matrices as the top three PCs from the 

principal components analysis (PCA) performed on the significant signals (i.e., most significant 

nominal p-values by brain region). To learn the mixture weights and scaling for the si-eQTL 

effects, we initially fit the mash model with a random set (i.e., unbiased representation of the 

results) of the tensorQTL interaction model results (i.e., 5% for gene-SNP pairs and 1% for 

transcript-, exon-, and junction-SNP pairs). We next fitted these mixture weights and scaling to 

all of the si-eQTL results in chunks. We extracted posterior summaries and measures of 

significance (i.e., local false sign rate [lfsr]). We considered si-eQTL significant if the lfsr < 

0.05. 

Schizophrenia risk GWAS association 

We downloaded the latest schizophrenia GWAS summary statistics with index and high-quality 

imputation SNPs as determined by Psychiatric Genomics Consortium (PGC version 3 [PGC3])11. 

Following download, we selected and converted PGC3 GWAS SNPs associated with BrainSeq 

Consortium SNPs as previously described12; specifically, we converted GWAS SNPs from hg19 

to hg38 using PyLiftover, merged them with BrainSeq Consortium SNPs on hg38 coordinates, 

and matched alleles. 

Fine mapping and colocalization  

We performed fine mapping and colocalization with gene level si-eQTL for the caudate nucleus, 

DLPFC, and hippocampus as previously described12,64 with slight modification for priors. 

https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl/src/rnaseqnorm.py
https://sciwheel.com/work/citation?ids=6061350&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12782344&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679,10392848&pre=&pre=&suf=&suf=&sa=0,0
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Briefly, we estimated priors from the tensorQTL nominal results with torus65. Following 

estimation of priors, we implemented DAP-G66,67 (version 1.0.0) to generate posterior inclusion 

probabilities (PIP) that provide an estimate of the probability of a variant being causal for 

downstream colocalization with fastENLOC68,69 (version 1.0). We applied fastENLOC with 

schizophrenia GWAS (PGC3)11. 

We visualized colocalization results using P-P plots and eQTL results from sex-only analysis. 

Specifically, we used tensorQTL as described above, to apply gene-level cis-eQTL analysis to 

female and male individuals separately without modification for sex interaction. We used a gene 

body window of 0.5Mb, MAF greater than or equal to 0.01, and confounders generated from the 

Sex-interacting eQTL analysis in cis and region specificity. We determined significance for the 

most highly associated variant per gene using empirical p-values based on beta-distribution fitted 

with an adaptive permutation (1,000 to 10,000). These p-values were corrected for multiple 

testing across genes using Storey’s q-value. For each brain region, we generated P-P plots using 

sex-specific nominal and permutation results (Data S1) for each significant colocalized gene 

identified (regional colocalization probability [RCP] > 0.5). 

General replication analysis 

Data download 

We downloaded differential expression results for sex differences from the supplemental 

materials for Trabzuni et al., Mayne et al., and Gershoni and Pietrokovski70–72. For sex 

differences in schizophrenia replication, we downloaded Qin et al. results7. For sex-interacting 

eQTL, we downloaded results from Trabzuni et al., Yao et al., Kukurba et al., and Shen et al.17–

19,72. 

For CommonMind Consortium replication of differential expression analysis, we downloaded 

differential expression results for sex differences from Hoffman et al.6, as well as normalized 

expression from Synapse (syn18103849). These results included two cohorts: NIMH HBCC 

(National Institute of Mental Health’s Human Brain Collection Core) and MSSM-Penn-Pitt 

(MSSM: Mount Sinai NIH Brain Bank and Tissue Repository, Penn: University of Pennsylvania 

Brain Bank of Psychiatric illnesses and Alzheimer’s Disease Core Center, and Pitt: University of 

Pittsburgh NIH NeuroBioBank Brain and Tissue Repository) cohorts73. 

Dosage compensation replication 

For dosage compensation replication, we calculated TPM using a mean insert size of 200. We 

computed the RXE as described above (Dosage compensation). We downloaded gene TPM 

from the GTEx v8 portal (https://www.gtexportal.org/home/datasets), as well as sample 

phenotype information. We computed RXE as described above (Dosage compensation). 

https://sciwheel.com/work/citation?ids=4408661&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4326016,5935432&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5711399,9635837&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12782344&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3584647,2601818,896894&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=2380179&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=896894,2040215,4121052,8988059&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=896894,2040215,4121052,8988059&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=10915314&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8218833&pre=&suf=&sa=0
https://www.gtexportal.org/home/datasets
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π1 replication analysis 

For π1 analysis, we initially selected all significant genes or eQTL (nominally significant, p-

value < 0.05) from our results and compared them with results from an external dataset (i.e., 

CommonMind Consortium [CMC]). Using the p-values from the external dataset, we calculated 

π0 with qvalue function from qvalue74 (version 2.30.0). We calculated π1 with Equation 10. The 

π1 statistic represents the fraction of effects shared between the two datasets. 

      Equation 10 

Graphics 

We generated venn diagrams with matplotlib_venn (version 0.11.5) Python (version 3.8) 

package. We generated UpSet plots in R using ComplexHeatmap75 (version 2.6.2). Unless 

otherwise stated, we generated box plots and scatterplots in R using ggpubr (version 0.4.0). We 

generated enrichment dot plots, enrichment heatmaps, and gene term enrichment plots using 

ggplot276. To generate circos plots, we used circlize77 (version 0.4.11) and ComplexHeatmap 

utilities in R. We used plotnine (version 0.12.1), a Python implementation of ggplot2, to generate 

enrichment heatmaps comparing public datasets with BrainSeq Consortium analysis, RXE 

scatterplots, and sex-interacting eQTL box plots. To generate rank-rank hypergeometric overlap 

(RRHO), we used the RRHO278,79 (version 1.0) and lattice packages in R.  

Code availability 

All code and Jupyter Notebooks are available through GitHub at 

https://github.com/LieberInstitute/sex_differences_sz with more detail80. 

  

https://sciwheel.com/work/citation?ids=11523002&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1478237&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2930267&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=802518&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3110646,5484838&pre=&pre=&suf=&suf=&sa=0,0
https://github.com/LieberInstitute/sex_differences_sz
https://sciwheel.com/work/citation?ids=15460628&pre=&suf=&sa=0
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Results 

Sex-specific expression across the caudate nucleus, DLPFC, and hippocampus 

We first explored sex differences in the brain of the 480 unique individuals (caudate nucleus 

[n=393], DLPFC [n=359], and hippocampus [n=375]) by performing differential expression of 

sex after adjusting for diagnosis, age, ancestry (SNP PCs 1-3), RNA quality, and hidden 

variances (Equation 1 and Table 2) using the BrainSeq Consortium dataset12,13. We observed 

831 unique, DEGs (FDR < 0.05; Fig. 1A) between the sexes across the caudate nucleus (n=689 

DEGs [279 upregulated in females; 410 upregulated in males]), DLPFC (n=256 [99 upregulated 

in females; 157 upregulated in males]), and hippocampus (n=147 [64 upregulated in females; 83 

upregulated in males]). Of these 831 unique DEGs, the sex chromosomes showed the most 

significant sex-biased expression (Data S2). Interestingly, most sex-associated DEGs for the 

caudate nucleus and DLPFC were autosomal (Table S2). When we expanded our analysis to the 

isoform-level, we identified an additional 859 unique genes associated with a differentially 

expressed transcript, exon, or exon-exon junction (Fig. S4). Furthermore, we observed a similar 

pattern of majority autosomal genes; however, the most significant differentially expressed 

features in this context were located on sex chromosomes (Table S2 and Data S2). 

To evaluate the function and association of the sexually dimorphic gene expression to heritable 

complex traits, we performed gene set enrichment analysis and MAGMA enrichment analysis on 

DEGs separately per brain region. For MAGMA gene set enrichment, we did not observe any 

significant associations (Data S3). This may be partly explained by the underrepresentation of 

allosomes in GWAS studies81. With gene set enrichment analysis, we observed significant 

enrichment (GSEA, q-value < 0.05) of several ontology and disease terms for each brain region 

(Fig. 1B and Data S4). As expected, we found enrichment for dosage compensation associated 

with female-biased (upregulated in females) DEGs across all brain regions. Additionally, we 

found significant enrichment of fibroid related disease terms (i.e., uterine fibroids, 

tubulointerstitial fibrosis, and fibroid tumor) associated with female-biased DEGs across all brain 

regions. The vast majority of enrichment terms (1,477 of 1,515 ontology and disease terms) were 

associated with female-bias DEGs across brain regions. The small fraction of enrichment terms 

associated with male-biased DEGs included histone modification, androgen receptor signaling, 

and autistic behavior (Data S4). In contrast, female-biased DEGs were primarily enriched for 

immune-related pathways (i.e., neutrophil migration, macrophage activation, humoral immune 

response, complement activation, and astrocyte development) across the brain (Data S4). We 

also found these enrichment patterns replicated in co-expression network modules44 associated 

with sex (Data S5). Even so, female- and male-constructed network modules were well 

preserved (Z > 10; Data S6), similar to reports by others45. Altogether, these results imply that 

networks shared between female and male individuals are well preserved, while significant sex-

specific modules are highly enriched for immune-related pathways. 

https://sciwheel.com/work/citation?ids=13868679,7037810&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14902256&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=486535&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=790982&pre=&suf=&sa=0
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Autosomes influence sex differences in the brain 

With so many autosomal sex-biased DEGs, we asked to what degree sex-biased autosomal genes 

contribute to sex differences in the brain. We separated allosomal and autosomal DEGs and 

performed principal component analysis to assess explained variance of these DEGs across the 

brain. While the first principal component of all allosome DEGs explained approximately 97% 

variance across brain regions, the autosomal DEGs also showed significant association with sex 

(Fig. S6). Interestingly, we found that explained variance drastically increased with only the 10 

most significant autosomal DEGs across brain regions (90%, 87%, and 88% for the caudate 

nucleus, DLPFC, and hippocampus; Fig. 1C and Fig. S6). As it appeared that a small subset of 

these autosomal DEGs explained a large proportion of expression variances between the sexes, 

we formally tested this using dynamic recursive feature elimination (dRFE)46. To this end, we 

applied random forest classification using 10-fold, sex-stratified, cross-validation with dRFE and 

found a median of 110 genes (77, 32.5, and 221 for caudate nucleus, DLPFC, and hippocampus 

respectively) with perfect test score accuracy for sex classification (Table S3 and Fig. S7). 

Interestingly, the prediction accuracy seemed to be driven by one pseudogene (RPS10P3 

[ribosomal protein S10 pseudogene 3]) shared across brain regions (Fig. S8). Additionally, 

RPS10P3 – located on chromosome 9 – has previously been reported to be associated with five 

different traits82–86, including sex-interacting cleft lip86 and lateral ventricle temporal horn 

volume in psychosis85. These results indicate that a small subset of autosomal genes significantly 

contributes to sexually dimorphic gene expression in the brain. 

Brain region interaction with sex 

To understand the regional specificity of sex DEGs, we compared DEGs from each brain region. 

We observed a significant enrichment of shared DEGs across the three brain regions (Fisher’s 

exact test, p-value < 0.05; Fig. 1D) with the majority (60 DEGs, 62.5%) on sex chromosomes. 

For replication analysis, we compared the DEGs with previous sex differences analysis in the 

brain6,70–72 and found greater than 62% of DEGs were significantly differentially expressed in all 

brain regions except for the GTEx cerebellum and anterior cingulate cortex (Fig. S9) with a 

concordant direction of effect between BrainSeq Consortium and GTEx brain regions (Fisher’s 

exact test, p-value < 0.01). For a more in-depth comparison, we examined the sex differences 

found using the CMC DLPFC6. We also discovered a large number of DEGs on sex 

chromosomes (39 of 51 [76.5%] and 41 of 54 [75.9%] for the NIMH HBCC and MSSM-Penn-

Pitt cohorts, respectively) similar to our BrainSeq Consortium analysis. Additionally, we 

observed significant pairwise enrichment of these CMC DEGs with our BrainSeq Consortium 

DEGs across brain regions (Fisher's exact test, p-value < 0.01; Fig. S10). Altogether, this 

suggests that X- and Y-linked genes drive brain-wide sex expression differences and autosomal 

genes drive brain region-specific differences. Additionally, autosomal DEGs were less likely to 

replicate in different datasets. 

https://sciwheel.com/work/citation?ids=15379808&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13213206,13753221,14569592,9688456,10175691&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=10175691&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9688456&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=896894,2601818,3584647,10915314&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=10915314&pre=&suf=&sa=0
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Interestingly, we found that all genes, regardless of significant association with sex, showed a 

significant positive correlation for the direction of effect between pairwise comparisons of the 

three brain regions (Spearman, rho > 0.69, p-value < 1.4e-108; Fig. 1E). At significant levels 

(DEGs, adjusted p-value < 0.05), these pairwise correlations dramatically increased (Spearman, 

rho > 0.99, p-value < 4e-104; Fig. S11A) with significant concordant direction of effect (RRHO; 

Fig. S12). Expanded analysis of transcripts, exons, and exon-exon 

junctions displayed a similar pattern with all shared, differentially 

expressed (DE) features (adjusted p-value < 0.05) having significant 

concordant direction and significant positive correlation among 

brain regions (Spearman, rho > 0.97, p-value ≅0; Fig. S11B-D). Moreover, at 

significant levels (adjusted p-value < 0.05), all directions agreed between the CMC DLPFC and 

the BrainSeq Consortium brain regions with a significant positive correlation (Spearman; rho > 

0.97 for all pairwise comparisons; p-value < 1.1e-44; Fig. S13). In summary, the direction of 

change for sexually dimorphic genes is generally shared across multiple brain regions and 

independent datasets. 

We next evaluated the degree of sex bias among brain regions formally with an interaction 

model for sex and brain region. Here, we found extensive interactions (Fig. 1F), particularly in 

the caudate nucleus as compared to the DLPFC (adjusted p-value < 0.05, DEGs=528) and the 

caudate nucleus as compared to the hippocampus (adjusted p-value < 0.05, DEGs=71). In 

contrast, we found only five genes (ZNF736P9Y, ENSG00000285756, TUBBP1, TBL1Y, and 

ENSG00000285679) with region-specific expression for sex between the DLPFC and 

hippocampus. When we expanded our analysis to the isoform level, we identified more than 

double unique DEGs (1303 [775 isoform only], 198 [127 isoform only], and 23 [18 isoform 

only], for caudate nucleus vs DLPFC, caudate nucleus vs hippocampus, and DLPFC vs 

hippocampus, respectively; Fig. S14, Table S4 and Data S7).  

To understand the functional significance of these brain region-specific transcriptional changes, 

we applied GSEA and MAGMA enrichment for each pairwise comparison. While we did not 

find enrichment for any brain or non-brain traits (MAGMA; Data S3), we did observe 

significant enrichment (GSEA, q-value < 0.05) of several ontology terms for all pairwise 

comparisons (Fig. S15 and Data S8). Interestingly, we observed terms associated with 

myelination (i.e., myelination, axon ensheathment, and ensheathment of neurons) for 

comparisons between the DLPFC and the other two brain regions. For brain region-specific 

transcriptional sex differences between the caudate nucleus and hippocampus, we also observed 

enrichment for cognition, neurotransmission, and regulation of synaptic plasticity. For 

transcriptional sex differences between the caudate nucleus and DLPFC, we observed additional 

terms associated with gene silencing. For transcriptional sex differences between the DLPFC and 

hippocampus, we observed additional terms associated with receptor signaling. Altogether, this 

analysis highlights the importance of brain region-specific transcriptional sex differences, which 

are significantly enriched for neurotransmission and myelination.  
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Fig. 1. Sex-biased expression across the caudate nucleus, DLPFC, and hippocampus. A. 

Circos plot showing significant differentially expressed genes (DEGs) for the caudate nucleus 

(blue; n=393; 121 female and 272 male), DLPFC (red; n=359; 114 female and 245 male), and 

hippocampus (green; n=375; 121 female and 254 male) across all chromosomes. Female bias 

(upregulated in female individuals) in red, and male bias (upregulated in male individuals) in 

blue. B. Gene set enrichment analysis (GSEA) of sex differential expression analysis across 

brain regions, highlighting the top ten most significant terms upregulated in females (female 

bias) or males (male bias). NES: normalized enrichment score. XCI: X-chromosome 

inactivation. C. Scatterplots of the estimated proportion of expression variance explained by sex 

within the 100 most significant autosomal DEGs (i.e., adjusted p-value) for the caudate nucleus 
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(DEGs, n=60), DLPFC (DEGs, n=25), and hippocampus (DEGs, n=42). D. UpSet plot showing 

overlap of DEGs across the caudate nucleus, DLPFC, and hippocampus. Blue is shared across 

the caudate nucleus, DLPFC, and hippocampus; orange, shared between two brain regions; and 

black, unique to a specific brain region. * Indicating p-value < 0.0001 for two-sided, Fisher's 

exact test. E. Scatterplot of effect size (logFC) for all genes tested showing concordant positive 

directionality with significant two-sided, Spearman correlation (R2) of all genes. A fitted trend 

line is presented in blue as the mean values +/- standard deviation. F. Example box plots of 

genes showing an interaction between sex and brain region. FC= fold change log2 (male / 

female). Female individuals in red and male individuals in blue. Adjusted p-value (P) annotation 

using dream42 (default of Satterthwaite approximation) generated statistics annotation. Box plots 

show the median and first and third quartiles, and whiskers extend to 1.5× the interquartile range. 

XCI and dosage compensation in the brain 

As 70% of the brain-wide, sexually dimorphic genes are located on sex chromosomes, we next 

evaluated the dosage of X-linked genes compared to autosomes. In order to equalize the dosage 

of X-linked genes between XX females and XY males, female mammals epigenetically silence 

one X chromosome in a process called XCI (X-chromosome inactivation). XCI is a 

chromosome-wide process where the majority of X-linked genes are nearly completely silenced, 

and a minority of X-linked genes either escape X inaction or show variable X inactivation. When 

we examined the DEGs by brain region for X-linked gene dosage, we found the majority of 

DEGs were enriched for XCI escape genes (Fig. S16, Fisher’s exact test, Bonferroni < 0.01; 

Fig. 2A), reflecting dosage compensation for the majority of X-linked genes subject to XCI as 

seen in previous studies51,87.  

For all three brain regions, we found XCI escape genes were significantly enriched within the 

female-biased DEGs, whereas male-biased DEGs, surprisingly, were also significantly enriched 

for genes escaping XCI across brain regions (Fisher’s exact test, Bonferroni < 0.01; Fig. 2A). 

These male-biased escaping XCI genes were all located on the PAR (pseudoautosomal regions) 

of both X and Y chromosomes (AKAP17A, ASMTL, ASMTL-AS1, CD99, CD99P1, DHRSX, 

GTPBP6, IL3RA, LINC00106, PLCXD1, PPP2R3B, and ZBED1; Data S9). Additionally, we 

found the most male-biased XCI-annotated genes in the caudate nucleus (n = 16, 9, and 10 DEGs 

for caudate nucleus, DLPFC, and hippocampus, respectively), which were mostly annotated as 

escape XCI genes (Data S9). In contrast, we only found enrichment of variable XCI genes in the 

caudate nucleus (Fisher’s exact test, Bonferroni < 0.01). Altogether, XCI escaping genes 

demonstrated higher expression in female individuals across brain regions, suggesting sex 

differences shared across brain regions are associated with well-documented XCI escaping genes 

for females. 

Next, we evaluated differences in chromosome-wide dosage by comparing the relative X 

chromosome expression (RXE) to autosomes (Fig. 2B and Fig. S17). Interestingly, we observed 

a significant decrease of RXE in male individuals only in the DLPFC (Mann-Whitney U, p-value 

https://sciwheel.com/work/citation?ids=9709939&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4345538,9135372&pre=&pre=&suf=&suf=&sa=0,0
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= 0.047), demonstrating region-specific dosage compensation. We also observed a similar trend 

of decreased RXE in the DLPFC from the CMC MSSM-Penn-Pitt cohort (Mann-Whitney U, p-

value = 0.07; Fig. S18A) but not the GTEx frontal cortex (Fig. S19). Even so, the large RXE 

variation across the 13 GTEx brain regions demonstrated region-specific dosage compensation 

(Fig. S19).  

As we found differences in the DLPFC between sexes, we next asked if this might be due to 

individuals with schizophrenia. Interestingly, we found decreased RXE in the hippocampus of 

male patients (Mann-Whitney U, p-value = 0.004; Fig. 2C) but not in the caudate nucleus, 

DLPFC, or CMC DLPFC (Fig. S18B). However, there was no significant interaction between 

sex and diagnosis status for any brain region for RXE. These results demonstrate slight 

differences between X-chromosome dosage in the hippocampus of individuals with 

schizophrenia. 

 

Fig. 2. X-linked gene expression and dosage compensation observed across the caudate 

nucleus, DLPFC, and hippocampus. A. Enrichment of significant sex-biased genes relative to 

genes known to escape X-chromosome inactivation (XCI) across the caudate nucleus (n=393; 

121 female and 272 male), DLPFC (n=359; 114 female and 245 male), and hippocampus 

(n=375; 121 female and 254 male). Dot plot of enrichment (two-sided, Fisher's exact test) of 

differentially expressed genes (DEGs) for XCI genes by brain region separated by male bias 

(upregulated in male individuals), female bias (upregulated in female individuals), and all DEGs. 

Size of dots denotes -log10 of Bonferroni corrected p-values. Color relates to log10 odds ratio 

(OR) with depletion in blue and enrichment in red. B. Box plot showing relative X-chromosome 
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expression (RXE) comparison between female (red) and male (blue) individuals with two-sided, 

Mann-Whitney U two-tailed, p-values annotated. C. Box plot showing significant differences 

between neurotypical control (CTL; gray) and schizophrenic (SZ; gold) individuals in the 

caudate nucleus, DLPFC, and hippocampus for female (left) and male (right) individuals with 

annotation of two-sided, Mann-Whitney U p-values. Box plots show the median and first and 

third quartiles, and whiskers extend to 1.5× the interquartile range. 

Interaction of schizophrenia and sex in the brain 

After investigating sex differences in the brain without consideration of diagnosis in 480 unique 

individuals (caudate nucleus [n=393], DLPFC [n=359], and hippocampus [n=375]), we next 

identified statistically significant differentially expressed features (adjusted p-value < 0.05) with 

respect to sex differences and diagnosis through an interaction model. No genes, transcripts, or 

exons were significant by this interaction model, similar to a previous study6. While overall 

replication with CMC DLPFC was limited, we found significant correlation of nominally 

significant (p-value < 0.05) transcriptional signatures between DLPFC and CMC DLPFC, NIMH 

HBCC cohort (π1 = 0.51; Spearman, ρ = 0.60, p-value < 0.01; Fig. S20 and Table S5). In 

contrast, on the junction level, 148 junctions demonstrated a significant (adjusted p-value < 0.05; 

Fig. S21A and Data S10) interaction between sex and diagnosis across the caudate nucleus (nine 

novel junctions; Fig. S21B), DLPFC (89 novel junctions; Fig. S21B), and hippocampus (47 

novel junctions and three junctions associated with DDX11L1 [DEAD/H-Box Helicase 11 Like 

1]; Fig. S21B). 

We also examined differential expression for schizophrenic female and male individuals 

separately across the caudate nucleus, DLPFC, and hippocampus using RRHO analysis to 

increase our power of detecting transcriptional changes. Here, we found schizophrenia-related 

transcriptional signatures, while concordant direction of effect varied dramatically depending on 

sex and brain region. Specifically, female schizophrenia transcriptional signatures showed the 

strongest pattern of sharing between the caudate nucleus and the DLPFC (Fig. 3A), while males 

showed the strongest pattern of sharing between DLPFC and hippocampus (Fig. 3B). These 

patterns are similar to those found in ours and others’ previous schizophrenia analyses adjusted 

for sex12,13. Altogether, sex-adjusted schizophrenia analysis largely reflects male transcriptional 

changes likely due to larger male sample sizes. 

Next, we examined female and male transcriptional changes for schizophrenia within individual 

brain regions. Here, we found the strongest shared signature within the caudate nucleus with very 

little observable overlap for the DLPFC and hippocampus (Fig. 3C). Furthermore, we examined 

DEGs (adjusted p-value < 0.05) and found a large overlap for the caudate nucleus but little 

overlap between females and males for the DLPFC and hippocampus (Fig. 3D). For the DLPFC 

and hippocampus, the limited observable overlap is apparent in the opposing enrichment patterns 

between DLPFC and hippocampus in females (Fig. 3A) and males (Fig. 3B); while female 

transcriptional signatures associated with genes upregulated in schizophrenia, male 

https://sciwheel.com/work/citation?ids=10915314&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7037810,13868679&pre=&pre=&suf=&suf=&sa=0,0
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transcriptional signatures associated with genes downregulated. Similar trends occurred for 

transcripts, exons, and junctions (Data S11 and Fig. S22). 

Sex-specific schizophrenia expression in the brain 

To further examine female- and male-specific schizophrenia DEGs, we applied a more stringent 

filter to exclude: 1) genes shared between female-only and male-only schizophrenia analyses and 

2) genes detected as significantly different (Mann-Whitney U, p-value < 0.05) with residualized 

expression for opposite sex-only individuals. For female-specific schizophrenia analysis, the 

single DLPFC DEG and 169 DEGs from the caudate nucleus were filtered out because they 

showed significant residualized expression for male individuals with schizophrenia (Mann-

Whitney U, p-value < 0.05) resulting in a total of 194 female-specific schizophrenia DEGs in the 

caudate nucleus (Table S6 and Data S11). For male-specific schizophrenia analysis, we found 

1130, 5, and 149 DEGs for the caudate nucleus, DLPFC, and hippocampus, respectively. Due to 

the small number of DLPFC-identified DEGs, we found no DEGs shared across brain regions for 

male-specific schizophrenia analysis (Table S7). We found two genes (EDN3 and PLD4) shared 

between the caudate nucleus and DLPFC and 23 genes (Table S7) shared between the caudate 

nucleus and hippocampus.  

We hypothesized that the smaller sample size for female individuals might explain why we 

identified few if any female-specific schizophrenia DEGs within the BrainSeq Consortium 

dataset. To test this hypothesis, we performed 1,000 random samplings of the male individuals at 

female sample sizes (n = 121, n = 114, and n = 121, for the caudate nucleus, DLPFC, and 

hippocampus, respectively) and calculated DEGs for each brain region and permutation. On 

average, we identified a drastically smaller number of schizophrenia DEGs (median male-only 

schizophrenia DEGs of 347, 0, and 1 for the caudate nucleus, DLPFC, and hippocampus, 

respectively; Fig. S26) in our subsampled male samples that showed no significant difference 

(permutation p-value = 0.30, 0.80, and 0.69 for the caudate nucleus, DLPFC, and hippocampus, 

respectively) between the number of schizophrenia DEGs identified from the female-only 

analysis. Altogether, the smaller female sample size, at least partially, explains the lack of 

identification of female-specific schizophrenia DEGs within the BrainSeq Consortium datasets. 

Given the role of estrogen in the treatment of schizophrenia88, we next examined sex hormone 

expression in the context of schizophrenia in the brain. Here, we did not observe any sex-specific 

or sex-specific schizophrenia DEGs for sex hormone expression (AR [androgen receptor], ESR1 

[estrogen receptor 1], ESR2 [estrogen receptor 2], and PGR [progesterone receptor]) across the 

brain. As sex hormone levels vary with age, we next examined any potential interaction between 

sex hormones and age. For female and male individuals, we found no significant interactions of 

diagnosis status and age for the caudate nucleus and DLPFC. For the hippocampus, we found a 

nominally significant upregulation of ESR2 (linear regression, p-value = 0.016 [FDR = 0.098]; 

Fig. S23) in female individuals with schizophrenia compared with neurotypical controls and 

PGR in male individuals with schizophrenia compared with neurotypical controls as a function 

https://sciwheel.com/work/citation?ids=14913594&pre=&suf=&sa=0
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of age (linear regression, p-value = 0.013 [FDR = 0.16]; Fig. S24). These results suggest that sex 

hormones expression may potentially interact with age and diagnosis status in the hippocampus. 

We next examined functional and MAGMA enrichment of these sex-specific, schizophrenia 

transcriptional changes. For MAGMA gene set enrichment, we found significant enrichment of 

schizophrenia and neutrophils – a white blood cell type – traits for male-specific DEGs 

upregulated in individuals with schizophrenia for the caudate nucleus and hippocampus 

(Data S3). We also found significant enrichment of the schizophrenia trait for female-specific 

DEGs upregulated in individuals with schizophrenia for the caudate nucleus (Data S3). In 

contrast, we found significant enrichment of basophil and eosinophils for male-specific DEGs 

downregulated in individuals with schizophrenia for the DLPFC (Data S3). With these immune-

related cell type enrichment, we were not surprised to observed significant depletion (GSEA, q-

value < 0.05) of immune-related pathways for both female- and male-only schizophrenia 

analysis (Fig. S25A,B and Data S12). Interestingly, we found the hippocampus showed the 

greatest degree of similarity between female- and male-only schizophrenia functional enrichment 

analysis (best-match average > 64%; Fig. S25C). In contrast, the caudate nucleus showed the 

lowest degree of similarity between sex-specific schizophrenia analysis with biological processes 

and molecule function showing 42% and 38% similarity in GO terms, respectively. This 

seemingly contradictory analysis highlights the potential impact of the larger number of sex-

specific schizophrenia DEGs identified in the caudate nucleus (Fig. 3D). In addition to this 

functional analysis, we also investigated gene co-expression networks between female and male 

individuals by diagnosis. While we observed complete preservation of modules for neurotypical 

control individuals across brain regions, we found one module significantly not preserved (Z < 

10) for the DLPFC (94 genes [46% protein coding]; Data S6). While we did not find any GO 

terms significantly enriched, this module included terms related to DNA binding (i.e., HDDC3, 

MAZ, PCBP1, TOP3B, and zinc finger proteins) and transposable and repetitive elements (i.e., 

LRRC24 and TIGD7). 

We next compared our results with the recent meta-analysis for sex-specific schizophrenia DEGs 

in the prefrontal cortex7. Of the 46 male-specific DEGs identified by Qin et al., we found a total 

of three overlapping genes: one gene overlapping (PARD3) with the caudate nucleus stringent 

female-specific DEGs and two overlapping genes (USE1 and ABCG2) with the hippocampus 

stringent male-specific DEGs, which all shared direction of effect. When we compared the full 

set of female and male schizophrenia DEGs across brain regions, we found an additional three 

overlapping genes (CD99, GABARAPL1, and LIN7B) shared with the caudate nucleus. Of these 

three only GABARAPL1 had a discordant direction of effect. 

https://sciwheel.com/work/citation?ids=2380179&pre=&suf=&sa=0
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Fig. 3. Transcriptional changes for schizophrenia shared between sexes within brain 

regions. RRHO (rank-rank hypergeometric overlap) maps comparing schizophrenia 

transcriptional changes for all genes between brain region pairs stratified by direction of effect in 

A. females and B. males. The panel presents the overlapping relationship between two brain 

regions. The color bars represent the degree of significance [-log10(p-value)] of overlap between 

two brain regions. Arrows show the direction of effect for schizophrenia (upregulated or 

downregulated in schizophrenia) by brain region. C. RRHO map comparing female and male 

schizophrenia transcriptional changes within brain regions for all genes. The color bar represents 

the degree of significance [-log10(p-value)] of the overlap between the sexes. D. Venn diagram 

showing overlap within brain regions for sex-stratified schizophrenia differentially expressed 

genes (DEGs; female in red and male in blue; FDR < 0.05). Female-specific schizophrenia DEGs 

in red, male-specific schizophrenia DEGs in blue, and schizophrenia DEGs shared between 

female- and male-specific schizophrenia analyses in purple. SZ: schizophrenia. 

Sex-dependent eQTL in the brain 

We asked whether genetic regulation of expressed features would manifest differently in females 

compared to males for the caudate nucleus, DLPFC, and hippocampus. We tested for statistical 

interaction between genotype and sex in the brain by applying multivariate adaptive shrinkage 

(mash) modeling in the 504 individuals (age > 13) for the caudate nucleus (n=399), DLPFC 

(n=377), and hippocampus (n=394). We identified hundreds of sex-interacting variants (si-

eQTL) across brain regions for gene-, transcript-, exon-, and junction-level analysis (Table 3 and 

Data S13). For example, we found 703, 545, and 546 gene-level si-eQTL (local false sign rate 
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[lfsr] < 0.05) for the caudate nucleus, DLPFC, and hippocampus, respectively, accounting for 

704 unique genes with si-eQTL (eGenes; Table 3 and Data S13) driven by the caudate nucleus. 

Only 21 (3.0%) of these eGenes (si-eQTL associated with unique genes) were located on the X 

chromosome; the majority of eGenes were located on autosomes, similar to sex-specific 

expression analysis. We found this proportion aligns with the ratio of autosomes to allosomes 

and shows no significant shift in distribution between eGenes and genes tested (Kolmogorov-

Smirnov test, p-value=0.89). 

To understand the regional specificity of these si-eQTL, we examined the proportion of si-eQTL 

detected across brain regions. Here, we found the majority (544 [77%]) of eGenes were shared 

across brain regions (Fig. 4A), which was also observed on the isoform level (i.e., transcripts, 

exons, and junctions; Fig. S27). Remarkably, all of the shared si-eQTL showed concordant 

directionality. Furthermore, the DLPFC and hippocampus showed nearly identical si-eQTL 

effect sizes (Fig. 4B), which was confirmed with the high level of replication across brain 

regions (π1 > 0.996; Fig. S28). The few brain region-specific si-eQTL showed small but 

significant sexual dimorphic genetic regulation of expression (Fig. S29). Unsurprisingly, the 

exon- and junction-level sharing showed a smaller proportion of shared si-eQTL across brain 

regions at an effect size within a factor of 0.99 (Fig. S30), suggesting alternative isoform usage 

drives differences in si-eQTL effect size across brain regions. 

To evaluate the functional relevance underlying si-eQTL in the caudate nucleus, DLPFC, and 

hippocampus, we performed functional gene term enrichment analysis on the eGenes for each 

brain region. We observed significant enrichment (hypergeometric, adjusted p-value < 0.05) 

across brain regions (Data S14), including enrichment for neurogenesis and cellular localization 

(Fig. 4C). Notably, we found that these enriched GO terms showed high semantic similarity60 

(best-match average, 62-100%) across brain regions (Fig. S31). While we did not find these si-

eQTL associated eGenes significant enrichment for sex-specific DEGs (Fisher’s exact test, p-

value > 0.10), we did found significant enriched (Fisher’s exact test, FDR < 0.05) for 

neurological disorders including schizophrenia12–14,89, autism spectrum disorder89, and 

Alzheimer’s disease90 (Fig. S32). 

When we compared our si-eQTL with previous work in whole blood and in lymphoblastoid cell 

lines, we found no overlap with the 19 si-eQTL identified in whole blood17,18 and two genes 

(ATG4C and CA2) of the 21 si-eQTL identified in lymphoblastoid cell lines19 and also present in 

the caudate nucleus si-eQTL. We next compared our results with the four si-eQTL (q-value < 

0.25) identified in GTEx brain regions (amygdala and nucleus accumbens basal ganglia)91 and 

found no overlaps. When we expanded to the 369 si-eQTL (q-value < 0.25) from all 43 GTEx 

tissues91, we found two overlapping genes encoding noncoding RNAs (ENSG00000270605 and 

ENSG00000272977) between the caudate nucleus and suprapubic skin and spleen GTEx tissues, 

respectively. Relatively low replication rate with GTEx brain regions can, in part, be attributed to 

low sample sizes in the GTEx dataset92.  

 

https://sciwheel.com/work/citation?ids=1283637&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7037810,6164734,2227080,13868679&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=6164734&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10248972&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2040215,4121052&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8988059&pre=&suf=&sa=0
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We next set out to determine if any of these si-eQTL had causal associations with schizophrenia 

risk (PGC3 GWAS p-value < 5e-8)11. To formally identify variants associated with 

schizophrenia risk, we performed colocalization analysis on fine-mapped gene level si-eQTL 

across brain regions (Data S16). We identified nine unique genes across the three brain regions 

with significant colocalization (regional colocalization probability [RCP] > 0.5; Data S17): one 

genes (ENSG00000287222; Fig. S33) in the caudate nucleus; seven genes in the DLPFC (ACE, 

ELAC2, FURIN, MMD, ZSCAN29, LINC00320, and ENSG00000289128; Fig. S34); and five 

genes in the hippocampus (ACE, ELAC2, MMD, STRC, and ENSG00000287222; Fig. S35). 

Interestingly, the brain regions with the largest detection of schizophrenia risk genes were the 

DLPFC and hippocampus; three of the nine colocalized genes were shared between these two 

brain regions. Additionally, the colocalized gene identified in the caudate nucleus 

(ENSG00000287222) was also significant in the hippocampus. Furthermore, we also identified 

this shared gene as a sex-specific schizophrenia DEG (male-specific, adjusted p-value = 0.026) 

in the caudate nucleus. While we did not observe any tissue-specific overlap between the other 

eight colocalized genes and sex-specific schizophrenia DEGs – potentially due to low number of 

identified DEGs – we did observe one additional colocalized gene (FURIN; male-specific, 

adjusted p-value = 0.023) as a sex-specific schizophrenia DEG in the caudate nucleus. 

Interestingly, we found ACE to be downregulated in schizophrenia for both sexes in the caudate 

nucleus. Altogether, this correlates with the high level of sharing of si-eQTL across brain 

regions, suggesting that while sex-interacting colocalized genes are highly recurrent across the 

brain, sex-specific dysregulation of these si-eQTL may be brain-region specific.  

https://sciwheel.com/work/citation?ids=12782344&pre=&suf=&sa=0
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Table 3. Summary of sex-interacting eQTL (lfsr < 0.05) across brain regions for genes, 

transcripts, exons, and exon-exon junctions associated with all si-eQTL. eQTL: number of 

variant-feature pairs for each feature type: genes, transcripts, exons, and exon-exon junctions. 

eFeature: number of unique features that have eQTL associations. eGene: number of eQTL 

associations with unique genes. lfsr: local false sign rate93. 

 

Brain Regions Caudate Nucleus DLPFC Hippocampus 

Gene 

eQTL 3,274 2,464 2,465 

eFeature 703 545 546 

eGenes 703 545 546 

Transcript 

eQTL 10,186 8,032 8,207 

eFeature 1,700 1,383 1,394 

eGenes 1,577 1,286 1,296 

Exon 

eQTL 10,439 7,873 7,824 

eFeature 1,737 1,426 1,420 

eGenes 801 665 662 

Junction 

eQTL 1,740 1,150 1,145 

eFeature 328 228 228 

eGenes 7 5 5 

 

 

 

 

https://sciwheel.com/work/citation?ids=3924972&pre=&suf=&sa=0
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Fig. 4. Sex-interacting eQTL (si-eQTL) are shared across brain regions. A. UpSet plot 

displaying overlap across brain regions for si-eQTL (local false sign rate [lfsr] < 0.05). Blue is 

shared across the caudate nucleus (n=399; 126 female and 273 male), DLPFC (n=377; 121 

female and 256 male), and hippocampus (n=394; 126 female and 268 male); orange, shared 

between two brain regions; and black, unique to a specific brain region. B. Heatmap of the 

proportion of gene level si-eQTL sharing with sign match (left), within a factor of 0.5 effect size 

(middle), and within a factor 0.99 effect size (right). C. Functional enrichment plot of the ten 

most significant gene ontology-terms (biological processes) of eGenes for the caudate nucleus 

(blue), DLPFC (yellow), and hippocampus (gray). 

Discussion 

Sex has been associated with differential gene expression in the brain and sex-specific effects in 

neuropsychiatric disorders like schizophrenia. Here, we aimed to take a holistic exploratory 

analysis approach to sex differences for schizophrenia in the caudate nucleus, DLPFC, and 

hippocampus. We identified numerous genetic features (genes, transcripts, exons, and exon-exon 

junctions) that 1) are associated with sex, 2) demonstrate sex-specific expression in 

schizophrenia, and 3) have expression that interacts with genotypes and sex as si-eQTL. 

Furthermore, we identified nine genes showing sex-variable association with schizophrenia risk11 

(PGC3 GWAS p-value < 5e-8) with colocalization and some overlap with sex-specific 

schizophrenia DEGs. Additionally, we have demonstrated slight differences between X-

chromosome dosage in the hippocampus of male individuals with schizophrenia – and further 

shown that the degree of dosage compensation varies across the brain. To the best of our 

knowledge, this is the largest multi-brain region analysis for sex differences in schizophrenia. 

https://sciwheel.com/work/citation?ids=12782344&pre=&suf=&sa=0


 

29 

In this study, we found 831 unique genes with sex-associated differential expression in the 

caudate nucleus, DLFPC, and hippocampus. While genes on sex chromosomes have the largest 

sex-specific effects, we also found that autosomal genes significantly influenced sex differences. 

Our results support previous findings of sex differences, including differences that are brain-

region specific70, are primarily located on autosomes6,71,72, and have exhibited shared direction of 

effect driven by allosomal DEGs70. A larger number of samples in our cohort allowed us to 

identify many more genes than previous analyses conducted across multiple regions, contributing 

to our knowledge on sex-specific genomic features and sex differences in the brain.  

To determine if sex differences observed across brain regions were related to XCI, we further 

examined DEGs located on the X chromosome. Here, our analysis aligned with previous work 

showing an enrichment of genes known to escape XCI51,87. Additionally, we found that across 

the brain (i.e., GTEx and BrainSeq Consortium) X-chromosome dosage showed brain region-

specific dosage compensation levels.  

The second aim of the study was to identify any sex-specific schizophrenia genomic features 

across multiple brain regions. As one of the most consistently implicated brain regions for the 

pathophysiology of schizophrenia, the DLPFC has been the primary focus of postmortem 

analysis for schizophrenia94,95. However, we have recently shown the importance of analyzing 

multiple brain regions, specifically for the identification of potentially new therapeutic targets12. 

As such, we aimed to identify 1) which brain region showed the most sex-specific schizophrenia-

associated transcriptional changes and 2) the degree of sharing of these schizophrenia-associated 

transcriptional changes across brain regions. 

While our interaction model found only junctions (148 exon-exon junctions) significantly 

dysregulated with a sex-specific interaction across brain regions, comparing female to male 

expression in schizophrenia allowed us to identify many more sex-specific schizophrenia 

genomic features than previous studies – even after applying an additional, more stringent filter 

to our sex-specific schizophrenia DEG results. This was unsurprising as we have previously 

found the caudate nucleus has substantially more schizophrenia DEGs compared to the DLPFC 

and hippocampus12. While we expect the majority of the sex-specific schizophrenia DEGs in the 

caudate nucleus to be associated with antipsychotic treatment12,96, our results also provide a 

starting point to examine differential antipsychotic effects by sex for schizophrenia. 

As the first study to compare multiple brain regions for sex-specific schizophrenia analysis, we 

also found that sex-specific schizophrenia differentially expressed features were highly brain-

region specific. This also was not unexpected as schizophrenia DEGs, irrespective of sex, are 

also highly brain-region specific12,13,15. However, the smaller number of identified DE features 

for transcripts, exons, and junctions was surprising. This might be due to our study being 

underpowered, as we found twice as many schizophrenia differentially expressed features in 

male individuals as compared to females. 

https://sciwheel.com/work/citation?ids=3584647&pre=&suf=&sa=0
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Given the role of estrogen in the treatment of schizophrenia, we also examined sex hormone-

related expression (AR, ESR1, ESR2, and PGR) in the brain. Using expression data, we were 

unable to identify any significant associations after correcting for multiple testing. We found 

only a nominally significant interaction with diagnosis and age of ESR2 in female individuals 

and PGR in male individuals in the hippocampus. This may be due to: 1) conventional methods 

for hormone measurements using serum, or 2) limited sample size for interaction models. 

Altogether, these findings suggest a need for increased samples from female individuals to 

further advance our understanding of potential sex differences for schizophrenia across multiple 

brain regions. 

The third aim of our study was to identify si-eQTL across the brain. We annotated hundreds of 

si-eQTL associated with 704 eGenes across the caudate nucleus, DLPFC, and hippocampus 

using mash modeling93. With mash modeling, we were able to increase our power to detect si-

eQTL. With this study, we have provided the first annotation of si-eQTL in the DLPFC and 

hippocampus and found that these sex-interacting eGenes were enriched for neurogenesis as well 

as DEGs from neurological studies (i.e., schizophrenia, autism spectrum disorder, and 

Alzheimer’s). Our results demonstrate the power of tissue-specific sex-interacting eQTL and its 

potential for identifying genes with sexually dimorphic expression for neurological disorder. 

In addition to annotating hundreds of si-eQTL, we have also provided the first annotation of sex-

interacting genes with causal variants associated with schizophrenia risk. One limitation of this 

analysis is our small female sample size. Even so, these results highlight the importance of 

examining genes associated with schizophrenia risk for potential differences in expression for 

population covariates (e.g., sex, age, and genetic ancestry).  

In summary, we have provided a comprehensive genetic and transcriptional analysis of sex 

differences in schizophrenia. We have increased the number of annotated features exhibiting sex 

bias in the brain adding to our current understanding of sex differences in the brain, identified 

sex-specific schizophrenia genes with indications for new therapeutic targets, and provided the 

first annotation of si-eQTL for the DLPFC and hippocampus. These results have the potential to 

direct new therapeutics and new strategies that can address sex-biased responses in the treatment 

of schizophrenia. Additionally, these results highlight the need for more female samples for 

schizophrenia analyses. 
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Code availability 

All code and Jupyter Notebooks are available through GitHub at 

https://github.com/LieberInstitute/sex_differences_sz with more detail80. 
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Figure legends 

Fig. 1. Sex-biased expression across the caudate nucleus, DLPFC, and hippocampus. A. 

Circos plot showing significant differentially expressed genes (DEGs) for the caudate nucleus 

(blue; n=393; 121 female and 272 male), DLPFC (red; n=359; 114 female and 245 male), and 

hippocampus (green; n=375; 121 female and 254 male) across all chromosomes. Female bias 

(upregulated in female individuals) in red, and male bias (upregulated in male individuals) in 

blue. B. Gene set enrichment analysis (GSEA) of sex differential expression analysis across 

brain regions, highlighting the top ten most significant terms upregulated in females (female 

bias) or males (male bias). NES: normalized enrichment score. XCI: X-chromosome 

inactivation. C. Scatterplots of the estimated proportion of expression variance explained by sex 

within the 100 most significant autosomal DEGs (i.e., adjusted p-value) for the caudate nucleus 

(DEGs, n=60), DLPFC (DEGs, n=25), and hippocampus (DEGs, n=42). D. UpSet plot showing 

overlap of DEGs across the caudate nucleus, DLPFC, and hippocampus. Blue is shared across 

the caudate nucleus, DLPFC, and hippocampus; orange, shared between two brain regions; and 

black, unique to a specific brain region. * Indicating p-value < 0.0001 for two-sided, Fisher's 

exact test. E. Scatterplots of effect size (logFC) for all genes tested showing concordant positive 

directionality with significant two-sided, Spearman correlation (R2) of all genes. F. Example box 

plots of genes showing an interaction between sex and brain region. FC= fold change log2 (male 

/ female). Female individuals in red and male individuals in blue. Adjusted P-value (P) 

annotation using dream42 (default of Satterthwaite approximation) generated statistics annotation. 

Box plots show the median and first and third quartiles, and whiskers extend to 1.5× the 

interquartile range. 

 

Fig. 2. X-linked gene expression and dosage compensation observed across the caudate 

nucleus, DLPFC, and hippocampus. A. Enrichment of significant sex-biased genes relative to 

genes known to escape X-chromosome inactivation (XCI) across the caudate nucleus (n=393; 

121 female and 272 male), DLPFC (n=359; 114 female and 245 male), and hippocampus 

(n=375; 121 female and 254 male). Dot plot of enrichment (two-sided, Fisher's exact test, two-

tailed) of differentially expressed genes (DEGs) for XCI genes by brain region separated by male 

bias (upregulated in male individuals), female bias (upregulated in female individuals), and all 

DEGs. Size of dots denotes -log10 of Bonferroni corrected p-values. Color relates to log10 odds 

ratio (OR) with depletion in blue and enrichment in red. B. Box plot showing relative X-

chromosome expression (RXE) comparison between female (red) and male (blue) individuals 

with two-sided, Mann-Whitney U p-values annotated. C. Box plot showing significant 

differences between neurotypical controls (CTL; gray) and individuals with schizophrenia (SZ; 

gold) in the caudate nucleus, DLPFC, and hippocampus for female (left) and male (right) 

individuals with annotation of two-sided, Mann-Whitney U p-values. Box plots show the median 

and first and third quartiles, and whiskers extend to 1.5× the interquartile range. 

 

https://sciwheel.com/work/citation?ids=9709939&pre=&suf=&sa=0
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Fig. 3. Transcriptional changes for schizophrenia shared between sexes within brain 

regions. RRHO (rank-rank hypergeometric overlap) maps comparing schizophrenia 

transcriptional changes for all genes between brain region pairs in A. females and B. males. The 

panel presents the overlap relationship between two brain regions. The color bars represent the 

degree of significance [-log10(p-value)] of overlap between two brain regions. Arrows show the 

direction of effect for schizophrenia (up- or down-regulated in schizophrenia) by brain region. C. 

RRHO map comparing female and male schizophrenia transcriptional changes within brain 

regions for all genes. The color bar represents the degree of significance [-log10(p-value)] of the 

overlap between the sexes. D. Venn diagram showing overlap within brain regions for sex-

stratified schizophrenia DEGs (female in red and male in blue; FDR < 0.05). Female-specific 

schizophrenia DEGs in red, male-specific schizophrenia DEGs in blue, and schizophrenia DEGs 

shared between female- and male-specific schizophrenia analyses in purple. SZ: schizophrenia. 

 

Fig. 4. Sex-interacting eQTL are shared across brain regions. A. UpSet plot displaying 

overlap across brain regions for si-eQTL (lfsr < 0.05). Blue is shared across the caudate nucleus 

(n=399; 126 female and 273 male), DLPFC (n=377; 121 female and 256 male), and 

hippocampus (n=394; 126 female and 268 male); orange, shared between two brain regions; and 

black, unique to a specific brain region. B. Heatmap of the proportion of gene level si-eQTL 

sharing with sign match (left), within a factor of 0.5 effect size (middle), and within a factor 0.99 

effect size (right). C. Functional enrichment plot of the ten most significant GO-terms (biological 

processes) of eGenes for the caudate nucleus (blue), DLPFC (yellow), and hippocampus (gray). 
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Supplementary information 

Figures 

 
Fig. S1. Completed overlap of reported gender with sex genotype. Box plot showing F 

estimates of genotype sex for female and male individuals correlate with reported gender (i.e., 

woman or man). Box plots show the median and first and third quartiles, and whiskers extend to 

1.5× the interquartile range. 
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Fig. S2. High correlation between covariates across brain regions. Heatmap showing 

correlation between covariates across brain regions (linear regression, Bonferroni corrected p-

values). Significant correlations (-log10 transformed, Bonferroni corrected p-values) are denoted 

in each tile. Empty tiles do not show a significant correlation.  
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Fig. S3. Spurious correlations reduced after regressing out general model covariates. 

Heatmaps showing correlation between principal component analysis of A. normalized gene 

expression or B. residualized gene expression. A value of 1.3 or greater is significant and 

equivalent to Bonferroni corrected p-value < 0.05. Significant correlations are denoted within 

each tile.  
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Fig. S4. Isoform level analysis increases the detection of sex-biased genes. Blue, shared 

across three brain regions; orange, shared between two brain regions; and black, unique to a 

specific brain region. Novel junctions not annotated to unique gene ID.  
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Fig. S5. Sample dendrogram showing outlier individuals for the DLPFC. Removed samples 

highlighted in red.  
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Fig. S6. Autosomal sex-specific DEGs show significant correlation with sex and strong 

predictive power for sex in the brain. Scatterplots of principal components (PC) 1 and 2 from 

dimensionally reduced expression of all allosomal and autosomal DEGs for the caudate nucleus, 

DLPFC, and hippocampus.   
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Fig. S7. Metric summary across brain regions and features show high classification 

accuracy for sex using autosomes. Box plot of train (red) and test (blue) accuracy for sex 

classification in the caudate nucleus, DLPFC, and hippocampus for genes, transcripts, exons, and 

junctions. Each point represents results from one fold within the 10-fold cross-validation. Dashed 

line denotes 90% accuracy. Box plots show the median and first and third quartiles, and whiskers 

extend to 1.5× the interquartile range. 
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Fig. S8. Dynamic recursive feature elimination curve shows prediction is driven primarily 

by one gene. Scatterplot showing mean normalized mutual information (NMI) training score 

across ten folds as a function of N features (x-axis, log10 scale).  
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Fig. S9. High overlap of sex-specific differentially expressed genes (DEGs) across multiple 

datasets and brain regions. Heatmaps comparing BrainSeq Consortium brain regions that show 

the ratio of DEGs overlap with A. Trabzuni et al. brain regions, B. Mayne et al. meta analysis 

with significant expression in at least one brain region using all chromosomes, only autosomes, 

or no Y chromosomes, and C. Gershoni and Pietrokovski brain regions. Abbreviations: CRBL: 

cerebellum, FCTX: frontal cortex, HIPP: hippocampus, HYPO: hypothalamus, MEDU: medulla, 

OCTX: occipital cortex, PUTM: putamen, SNIG: substantia nigra, TCTX: temporal cortex, 

THAL: thalamus, and WHMT: white matter.  
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Fig. S10. Significant sharing of sex-specific differentially expressed genes (DEGs) across 

brain regions replicate in the CommonMind Consortium (CMC) DLPFC. UpSet plot 

showing number of DEGs shared across brain regions with the CMC DLPFC cohort A. NIMH 

HBCC and B. MSSM-Penn-Pitt. * Indicating p-value < 0.01 for two-tailed, Fisher's exact test. 

Green is shared across the four brain regions; blue, shared across three brain regions; orange, 

shared between two brain regions; and black, unique to a specific brain region.  
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Fig. S11. All significantly differentially expressed features (FDR < 0.05) have concordant 

directionality for sex differences across the three brain regions. Scatterplot of Spearman 

correlation comparing effect size (logFC) from sex differentially expressed features (adjusted p-

value < 0.05) between brain region pairs for A. genes, B. transcripts, C. exons, and D. exon-exon 

junctions. A fitted trend line is presented in blue as the mean values +/- standard deviation.  
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Fig. S12. Concordant transcriptional changes for sex-specific expression across the brain. 

RRHO (rank-rank hypergeometric overlap) maps comparing sex-specific transcriptional changes 

for all genes between brain region pairs stratified by direction of effect. There are no genes with 

discordant direction of effect. The panel presents the overlapping relationship between two brain 

regions. The color bar represents the degree of significance [-log10(p-value)] of overlap between 

two brain regions. Arrows show the direction of effect for sex (female biased [downregulated] or 

male biased [upregulated]) by brain region.  
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Fig. S13. Replication of concordant directionality of sex DEGs with CommonMind (CMC) 

DLPFC. Scatterplot comparing effect size (logFC) between BrainSeq Consortium brain regions 

(caudate nucleus, DLPFC, and hippocampus) and CMC DLPFC cohort A. NIMH HBCC and B. 

MSSM-Penn-Pitt. A fitted trend line is presented in blue as the mean values +/- standard 

deviation. The standard deviation is shaded in light gray. 
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Fig. S14. Unique differentially expressed genes (DEGs) double with the inclusion of 

isoform-level analysis. Blue, shared across three brain regions; orange, shared between two 

brain regions; and black, unique to a specific brain region. Novel junctions not annotated to 

unique gene ID.  
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Fig. S15. Brain region-specific transcriptional sex differences show significant enrichment 

for myelination, cognition, and gene silencing. Gene set enrichment analysis (GSEA) of brain 

region-specific sex differential expression analysis between brain regions. NES: normalized 

enrichment score.  
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Fig. S16. Large overlap of escaping X-chromosome inactivation (XCI) with sex-specific 

differentially expressed genes (DEGs). Venn diagram demonstrating large overlap of escaping 

X-chromosome inactivation (XCI) genes with sex-specific differentially expressed genes (DEGs) 

upregulated in female individuals (female bias; red) compared with variable and inactive XCI 

genes for the caudate nucleus, DLPFC, and hippocampus. DEGs upregulated in male individuals 

(male bias; blue). XCI genes in green.   
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Fig. S17. Dosage is properly compensated in the caudate nucleus, DLPFC, and 

hippocampus. Scatterplot of relative X expression (RXE) across brain regions separated by sex. 

Control (red), Schizophrenia (blue), caudate nucleus (circle), DLPFC (triangle), and 

hippocampus (square).  
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Fig. S18. Replication of relative X expression (RXE) sex differences within the DLPFC of 

CommonMind Consortium (CMC). A. Schematic of RXE (left) and box plots showing RXE 

comparison between female (red) and male (blue) individuals for the CMC DLPFC (right). B. 

Box plots showing RXE comparison between neurotypical controls (gray) and schizophrenia 

(gold) individuals for female (left) and male (right) individuals in the CMC DLPFC. Box plots 

show the median and first and third quartiles, and whiskers extend to 1.5× the interquartile range. 

Annotations are p-values from Mann-Whitney U two-tailed test. 
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Fig. S19. Replication of relative X expression (RXE) sex differences within the 13 brain 

regions of GTEx shows RXE variation within GTEx brain regions. Box plots showing RXE 

comparison between female (red) and male (blue) individuals for the 13 GTEx brain regions. 

Box plots show the median and first and third quartiles, and whiskers extend to 1.5× the 

interquartile range. Annotations of p-values are derived from Mann-Whitney U two-tailed test. 

Significant differences are bolded.  

 

  



 

64 

 

Fig. S20. Limited replication of nominally significant, sex-interacting, schizophrenia-

associated DEGs (differentially expressed genes) shared with CommonMind Consortium 

(CMC) DLPFC (NIMH HBCC cohort). Scatterplot comparing effect size (logFC) between 

BrainSeq Consortium brain regions (caudate nucleus, DLPFC, and hippocampus) and CMC 

DLPFC cohort A. NIMH HBCC and B. MSSM-Penn-Pitt. A fitted trend line is presented in blue 

as the mean values +/- standard deviation. The standard deviation is shaded in light gray. 
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Fig. S21. Differentially expressed junctions demonstrating sex and diagnosis interaction in 

the caudate nucleus. A. Circos plot showing significant DE junctions for the caudate nucleus 

(blue), DLPFC (red), and hippocampus (green) across all chromosomes. B. Box plots of the most 

significant upregulated and downregulated DE junction by brain region. Neurotypical controls 

(CTL), schizophrenia (SZ), female (red), and male (blue). Adjusted p-value from the DE-

interacting model is annotated on the box plots. Box plots show the median and first and third 

quartiles, and whiskers extend to 1.5× the interquartile range. 
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Fig. S22. Little identification of female-specific schizophrenia differential features 

(transcripts, exons, and junctions) across the caudate nucleus, DLPFC, and hippocampus. 

Venn diagram showing little to no overlap for DLPFC and hippocampus between female (red) 

and male (blue) schizophrenia differentially expressed transcripts, exons, and exon-exon 

junctions.  
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Fig. S23. Nominal significant interaction of age and diagnosis in the hippocampus for ESR2 

for female individuals. Scatterplot of residualized expression showing correlation with age as a 

function of diagnosis status (control [CTL] in red and schizophrenia [SZ] in blue). A fitted trend 

line is presented as the mean values +/- standard deviation separated by diagnosis status (control 

in red and schizophrenia in blue). The standard deviation is shaded in by diagnosis status (control 

in red and schizophrenia in blue). 
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Fig. S24. No significant interaction of age and diagnosis in the hippocampus for ESR2 for 

male individuals. Scatterplot of residualized expression showing no significant correlation with 

age as a function of diagnosis status (control [CTL] in red and schizophrenia [SZ] in blue). A 

fitted trend line is presented as the mean values +/- standard deviation separated by diagnosis 

status (control in red and schizophrenia in blue). The standard deviation is shaded in by diagnosis 

status (control in red and schizophrenia in blue).  
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Fig. S25. Sex-specific schizophrenia DEGs show large overlap and enrichment for immune-

related pathways. Plot of the most significant by p-value gene terms from the gene term 

enrichment analysis. NES > 0: upregulated in individuals with schizophrenia and NES < 0: 

downregulated in individuals with schizophrenia. 
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Fig. S26. Reduction of the detected schizophrenia differentially expressed genes (DEGs) in 

male-only analysis at smaller sample sizes. Histogram of permutation analysis of male-only 

differential expression analysis at female sample size levels (n=121, 114, and 121 for the caudate 

nucleus, DLPFC, and hippocampus, respectively) shows a reduction of detected schizophrenia 

DEGs similar to female-only schizophrenia analysis.  
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Fig. S27. si-eQTLs are shared across brain regions. UpSet plots showing the majority of si-

eQTL are shared across features for eTranscripts (si-eQTL associated with unique transcripts), 

eExons (si-eQTL associated with unique exons), and eJunctions (si-eQTL associated with unique 

junctions). Blue is shared across three brain regions; orange, shared between two brain regions; 

and black, unique to a specific brain region. 
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Fig. S28. High level of replication of si-eQTL across brain regions. Histogram of significant 

si-eQTL (lfsr < 0.05) from nominal p-values generated from A. female-only and B. male-only 

eQTL analyses. π1 (pi1) statistic annotated on histograms.  
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Fig. S29. Example box plot of caudate nucleus-specific si-eQTL. Example of caudate nucleus-

specific si-eQTL (lfsr < 0.05). All other si-eQTL are shared with the caudate nucleus. Box plots 

show the median and first and third quartiles, and whiskers extend to 1.5× the interquartile range.  
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Fig. S30. si-eQTL SNP-gene pairs shared across brain regions demonstrate concordant 

directionality. Heatmap of proportion of feature level (transcripts, exons, and exon-exon 

junctions) si-eQTL sharing with the sign of si-eQTL matching (left), the same sign of si-eQTL 

and within a factor of 0.5 effect size (middle), and the same sign of si-eQTL and within a factor 

0.99 effect size (right) using mashr63. A factor of one is a perfect effect size match. 

 

 

https://sciwheel.com/work/citation?ids=6061350&pre=&suf=&sa=0
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Fig. S31. Sex-interacting eGenes share functional semantic similarity across brain regions. 

Heatmap of significant term enrichment for the Gene Ontology database (BP: Biological 

Process, CC: Cellular Component, and MF: Molecular Function) across brain regions. 
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Fig. S32. Sex-interacting eGenes are enriched for neuropsychiatric disorders. Heatmap of 

enrichment (red) / depletion (blue) for sex-interacting eGenes with A. differential expression 

genes (DEG) or B. transcriptome-wide association studies (TWAS) for neuropsychiatric 

disorders for the caudate nucleus, DLPFC, and hippocampus. Significant enrichments (Fisher’s 

exact test, FDR corrected p-values, -log10 transformed) annotated within tiles. BS: BrainSeq 

Consortium, CMC: CommonMind Consortium, PSY: psychENCODE. For BrainSeq Consortium 

and CMC, DEG and TWAS are for schizophrenia (SZ). ASD: Autism spectrum disorder, BD: 

Bipolar disorder. eGenes: si-eQTL associated with unique genes. psychENCODE results are for 

DLPFC.  
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Fig. S33. Colocalization of si-eQTL and schizophrenia risk in the caudate nucleus. P-P plot 

of the significant schizophrenia GWAS associations (RCP > 0.5). Gene name annotated on top of 

scatterplot. A fitted trend line is presented in black as the mean values +/- standard deviation. 

The standard deviation is shaded in light gray.  
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Fig. S34. Colocalization of si-eQTL and schizophrenia risk in the DLPFC. P-P plots of the 

significant schizophrenia GWAS associations (RCP > 0.5). Gene names annotated on top of each 

scatterplot. A fitted trend line is presented in black as the mean values +/- standard deviation. 

The standard deviation is shaded in light gray. 
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Fig. S35. Colocalization of si-eQTL and schizophrenia risk in the hippocampus. P-P plots of 

the significant schizophrenia GWAS associations (RCP > 0.5). Gene names annotated on top of 

each scatterplot. A fitted trend line is presented in black as the mean values +/- standard 

deviation. The standard deviation is shaded in light gray. 
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Tables 

Table S1. Summary of GWAS trait download information including website and download filename. 

GWAS Trait Website Filename 

Schizophrenia11 

https://www.med.unc.edu/pgc/do

wnload-results/ 

PGC3_SCZ_wave3.european.autosome.public.v3.vcf.ts

v.gz 

Depression97 

https://datashare.ed.ac.uk/handle/1

0283/3203 

Summary statistics of 10,000 variants from a meta-

analysis of PGC, UK Biobank and 23andMe (444.2Kb) 

Bipolar 

Disorder98 

https://www.med.unc.edu/pgc/do

wnload-results/ daner_PGC_BIP32b_mds7a_0416a.gz 

Autism99 

https://www.med.unc.edu/pgc/do

wnload-results/ iPSYCH-PGC_ASD_Nov2017.gz 

ADHD100 

https://www.med.unc.edu/pgc/do

wnload-results/ 

daner_adhd_meta_filtered_NA_iPSYCH23_PGC11_si

gPCs_woSEX_2ell6sd_EUR_Neff_70.meta.gz 

Anorexia101 

https://www.med.unc.edu/pgc/do

wnload-results/ pgcAN2.2019-07.vcf.tsv.gz 

BMI102 

https://portals.broadinstitute.org/c

ollaboration/giant/index.php/GIA

NT_consortium_data_files Meta-analysis_Locke_et_al+UKBiobank_2018.txt.gz 

Height83  

https://cnsgenomics.com/data/gian

t_2022/ 

https://cnsgenomics.com/data/giant_2022/GIANT_HEI

GHT_YENGO_2022_GWAS_SUMMARY_STATS_E

UR.gz 

Basophil 

count103 

https://ftp.sanger.ac.uk/project/hu

mgen/summary_statistics/human/2

017-12-12/ baso_N171846_narrow_form.tsv.gz 

Neutrophil 

count103 

https://ftp.sanger.ac.uk/project/hu

mgen/summary_statistics/human/2

017-12-12/ neut_N170702_narrow_form.tsv.gz 

Eosinophil 

count103 

https://ftp.sanger.ac.uk/project/hu

mgen/summary_statistics/human/2

017-12-12/ eo_N172275_narrow_form.tsv.gz 

Monocyte 

count103 

https://ftp.sanger.ac.uk/project/hu

mgen/summary_statistics/human/2

017-12-12/ mono_N170721_narrow_form.tsv.gz 

  

https://sciwheel.com/work/citation?ids=12782344&pre=&suf=&sa=0
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://sciwheel.com/work/citation?ids=6375671&pre=&suf=&sa=0
https://datashare.ed.ac.uk/handle/10283/3203
https://datashare.ed.ac.uk/handle/10283/3203
https://sciwheel.com/work/citation?ids=6887254&pre=&suf=&sa=0
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://sciwheel.com/work/citation?ids=6527562&pre=&suf=&sa=0
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://sciwheel.com/work/citation?ids=6062445&pre=&suf=&sa=0
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://sciwheel.com/work/citation?ids=7192844&pre=&suf=&sa=0
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://sciwheel.com/work/citation?ids=5748493&pre=&suf=&sa=0
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://sciwheel.com/work/citation?ids=13753221&pre=&suf=&sa=0
https://cnsgenomics.com/data/giant_2022/
https://cnsgenomics.com/data/giant_2022/
https://sciwheel.com/work/citation?ids=2588727&pre=&suf=&sa=0
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://sciwheel.com/work/citation?ids=2588727&pre=&suf=&sa=0
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://sciwheel.com/work/citation?ids=2588727&pre=&suf=&sa=0
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://sciwheel.com/work/citation?ids=2588727&pre=&suf=&sa=0
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
https://ftp.sanger.ac.uk/project/humgen/summary_statistics/human/2017-12-12/
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Table S2. Summary of differential expression results (adjusted p-value < 0.05) by feature (genes, transcripts, 

exons, and exon-exon junctions) for sex differences in the caudate nucleus, DLPFC, and hippocampus. 

Number of differentially expressed features is separated by chromosome location. The number of unique genes 

associated with transcript, exon, or exon-exon junction in parenthesis. *Novel junctions not annotated to unique 

gene ID. 

Brain Region Chr Location Gene 
Transcript 

(Geneid) 

Exon  

(Geneid) 

Junction 

(Geneid) 

Caudate nucleus 

Allosomal 112 333 (100)  1523 (111) 622 (11)* 

Autosomal 576 252 (232) 1291 (419) 399 (5)* 

Mitochondria 1 2 (2) 0 (0) 3 (1)* 

DLPFC 

Allosomal 70 298 (97) 725 (69) 609 (10)* 

Autosomal 186 307 (291) 903 (310) 1421 (14)* 

Mitochondria 0 0 (0) 0 (0) 0 (0)* 

Hippocampus 

Allosomal 79 290 (88) 1361 (101) 516 (9)* 

Autosomal 68 144 (133) 669 (244) 370 (4)* 

Mitochondria 0 0 (0) 0 (0) 1 (1)* 
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Table S3. Summary of random forest classification with dynamic recursive feature elimination prediction for 

sex using autosomes accuracy and smallest number of features. Train, test, and smallest set metrics of mean, 

median, and standard deviation (std) across 10 folds for each feature (gene, transcript, exon, and exon-exon 

junction) and brain region (caudate nucleus, DLPFC, and hippocampus). 

Feature Brain Region 

N Features Train Accuracy (%) Test Accuracy (%) 

Median Mean ± Std Median Mean ± Std Median Mean ± Std 

Gene 

Caudate nucleus 77 349 ± 609 100 99.8 ± 0.4 100 100 ± 0 

DLPFC 32.5 50.6 ± 29.8 100 99.6 ± 0.5 100 99.2 ± 1.3 

Hippocampus 221 355 ± 538 100 99.7 ± 0.2 100 99.7 ± 0.8 

Transcript 

Caudate nucleus 51 51.9 ± 7.9 93.8 94.0 ± 0.8 93.7 92.9 ± 5.6 

DLPFC 84 91 ± 20.7 98.6 98.4 ± 0.4 100 98.6 ± 2.0 

Hippocampus 60.5 55.8 ± 41.4 97.3 97.4 ± 0.3 97.4 97.9 ± 2.1 

Exon 

Caudate nucleus 219 196.6 ± 135 100 99.9 ± 0.1 100 99.7 ± 0.8 

DLPFC 56.5 75.4 ± 62.9 99.1 98.9 ± 1.1 100 98.6 ± 2.7 

Hippocampus 324.5 352 ± 324 99.7 99.7 ± 0.1 100 99.7 ± 0.8 

Junction 

Caudate nucleus 66.5 69.3 ± 36.5 98.7 98.6 ± 0.8 97.4 97.7 ± 1.9 

DLPFC 28 31.6 ± 16.1 99.1 99.2 ± 0.3 100 99.2 ± 1.3 

Hippocampus 48.5 42.3 ± 18.3 98.8 99.0 ± 0.4 100 99.7 ± 0.8 
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Table S4. Summary results of differential expression analysis (adjusted p-value < 0.05) of interaction for sex 

and brain region for genes, transcripts, exons, and exon-exon junctions. The number of unique genes associated 

with transcript, exon, or exon-exon junction in parenthesis. *Novel junctions not annotated to unique gene ID. 

Brain Regions Gene Transcript (Geneid) Exon (Geneid) Junction (Geneid) 

Caudate nucleus and 

DLPFC 

528 728 (636) 2780 (789) 694 (3)* 

Caudate nucleus and 

Hippocampus 

71 137 (102) 256 (95) 127 (5)* 

DLPFC and 

Hippocampus 

5 25 (19) 6 (3) 80 (2)* 

 

  



 

84 

Table S5. Summary of π1 statistic for sex-specific schizophrenia nominally significant DEGs (p-value < 0.05) 

between BrainSeq (caudate nucleus, DLPFC, and hippocampus) and CMC DLPFC by cohort. 

 

CMC DLPFC cohort BrainSeq Region π1 statistic 

MSSM-Penn-Pitt 

Caudate nucleus 0 

DLPFC 0 

Hippocampus 0 

NIMH HBCC 

Caudate nucleus 0.07 

DLPFC 0.51 

Hippocampus 0 
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Table S6. Summary of stringent sex-specific differential expression analysis (FDR < 0.05) for schizophrenia 

by sex and feature (gene, transcript, exon, and exon-exon junction) for the caudate nucleus, DLPFC, and 

hippocampus. The number of unique genes associated with transcript, exon, or exon-exon junction in parenthesis. 

*Novel junctions not annotated to unique gene ID. 

Brain Region Sex Gene Transcript 

(Geneid) 

Exon (Geneid) Junction (Geneid) 

Caudate nucleus Female 194 16 (16) 22 (17) 15 (1)* 

Male 1130 190 (178) 3645 (864) 1007 (3)* 

DLPFC Female 0 0 (0) 0 (0) 0 (0)* 

Male 5 1 (1) 23 (3) 17 (1)* 

Hippocampus Female 0 0 (0) 7 (7) 4 (2)* 

Male 149 105 (104) 865 (53690) 72 (3)* 
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Table S7. Summary of shared genes between two brain regions for stringent male-specific schizophrenia 

DEGs.  

Brain Regions # of Genes Gene Names 

Caudate nucleus and 

DLPFC 
2 EDN3 and PLD4 

Caudate nucleus and 

Hippocampus 
23 

MIDEAS, IL1R1, SLC11A1, DCP1A, OSMR, ENSG00000272601, 

TMEM52B, CHD2, ACSL5, MACORIS, GPD1, BCL6, JAK3, MYC, 

ZBTB16, TAC1, MMD2, IL18BP, PLRG1, ETV6, ZNF395, and 

SPAG7  

DLPFC and 

Hippocampus 
0 Not available 
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Data 

Data S1. BrainSeq_bySex_genes_3region_eQTL_results.tar.gz: Compressed tar file 

containing gene eQTL results by sex per brain region including all nominal p-values as well as 

permutation analysis. 

Data S2. differential_expression_analysis_4features_sex.txt.gz: Compressed text file of 

differential expression analysis for sex across the caudate nucleus, DLPFC, and hippocampus for 

four features (gene, transcript, exon, and exon-exon junction). 

Data S3. BrainSeq_MAGMA_enrichment_analysis.xlsx: Excel file of magma enrichment 

results of all DEGs (i.e., sex-specific, sex interacting with brain region, and sex-specific 

schizophrenia) separated by direction of effect across the caudate nucleus, DLPFC, and 

hippocampus. 

Data S4. BrainSeq_sex_specific_functional_enrichment_3brain_regions.xlsx: Excel file of 

GO-term enrichment and GSEA for sex across the caudate nucleus, DLPFC, and hippocampus. 

Data S5. BrainSeq_sex_WGCNA_results.tar.gz: Compressed tar file containing with 

WGCNA results for autosomal only and all genes sex networks including eigengenes, module 

membership text files, GO enrichment text and excel file results, and enrichment results with sex 

DEG analysis for the caudate nucleus, DLPFC, and hippocampus. 

Data S6. BrainSeq_module_preservation_zsummary.xlsx: Excel file of Z summary for 

module preservation across brain regions for all individuals, control only, and schizophrenia 

only. 

Data S7. differential_expression_region_interaction_sex_4features.txt: Text file of 

differential expression analysis for the interaction between brain region and sex for the four 

features (gene, transcript, exon, and exon-exon junction). 

Data S8. BrainSeq_region_interaction_sex_functional_enrichment.xlsx: Excel file of GSEA 

for sex and region interaction pairwise enrichment. 

Data S9. BrainSeq_male_biased_genes_XCI_status.tsv: Text file of male-biased (upregulated 

in male individuals) DEGs across the caudate nucleus, DLPFC, and hippocampus annotated for 

XCI status. 

Data S10 differential_expression_interaction_jxn.txt: Text file of differentially expressed 

exon-exon junctions for interaction model of schizophrenia and sex across the caudate nucleus, 

DLPFC, and hippocampus. 

Data S11. differential_expression_schizophrenia_by_sex_4features.txt.gz: Compressed text 

file of differential expression analysis for schizophrenia by sex across the caudate nucleus, 

DLPFC, and hippocampus for four features (gene, transcript, exon, and exon-exon junction). 

Data S12. functional_enrichment_analysis_sexSpecificSZ_3brain_regions.txt: Functional 

enrichment of male-specific schizophrenia across three brain regions using stringent gene list (all 

DEGs, upregulated and downregulated in schizophrenia). 
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Data S13. BrainSeq_sexGenotypes_4features_3regions.txt.gz: Compressed text file of sex-

interacting eQTL results across the caudate nucleus, DLPFC, and hippocampus for four features 

(gene, transcript, exon, and exon-exon junction) generated using mash modeling. 

Data S14. BrainSeq_sex_interacting_eGene_functional_enrichment.xlsx: Excel file of 

functional enrichment of sex-interacting eQTL associated with unique genes for the caudate 

nucleus, DLPFC, and hippocampus. 

Data S15. BrainSeq_siEQTL_public_comparison.xlsx: Excel file of si-eQTL shared with the 

public datasets19,91. 

Data S16. dapg_sex_interacting_eQTL_results.tar.gz: si-eQTL results after fine-mapping 

across the three brain regions for four features (gene, transcript, exon, and exon-exon junction). 

Data S17. BrainSeq_colocalization_3regions.xlsx: Excel file of gene level colocalization 

between DAP-G fine-mapped sex-interacting eQTL and schizophrenia GWAS11 on the signal 

level and individual SNP level using fastENLOC. 

https://sciwheel.com/work/citation?ids=8988059,9641906&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12782344&pre=&suf=&sa=0

